Molecular stratification within triple-negative breast cancer subtypes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12-13

AUTHORS

Dong-Yu Wang, Zhe Jiang, Yaacov Ben-David, James R. Woodgett, Eldad Zacksenhaus

ABSTRACT

Triple-negative breast cancer (TNBC) has been subdivided into six distinct subgroups: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem–like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR). We recently identified a subgroup of TNBC with loss of the tumor suppressor PTEN and five specific microRNAs that exhibits exceedingly poor clinical outcome and contains TP53 mutation, RB1 loss and high MYC and WNT signalling. Here, show that these PTEN-low/miRNA-low lesions cluster with BL1 TNBC. These tumors exhibited high RhoA signalling and were significantly stratified on the basis of PTEN-low/RhoA-signalling-high with hazard ratios (HRs) of 8.2 (P = 0.0009) and 4.87 (P = 0.033) in training and test cohorts, respectively. For BL2 TNBC, we identified AKT1 copy gain/high mRNA expression as surrogate for poor prognosis (HR = 3.9; P = 0.02 and HR = 6.1; P = 0.0032). In IM, programmed cell death 1 (PD1) was elevated and predictive of poor prognosis (HR = 5.3; P = 0.01 and HR = 3.5; P < 0.004). Additional alterations, albeit without prognostic power, characterized each subtype including high E2F2 and TGFβ signalling and CXCL8 expression in BL2, high IFNα and IFNγ signalling and CTLA4 expression in IM, and high EGFR signalling in MSL, and may be targeted for therapy. This study identified PTEN-low/RhoA-signalling-high, and high AKT1 and PD1 expression as potent prognostications for BL1, BL2 and IM subtypes with survival differences of over 14, 2.75 and 10.5 years, respectively. This intrinsic heterogeneity could be exploited to prioritize patients for precision medicine. More... »

PAGES

19107

References to SciGraph publications

  • 2009-08-02. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers in NATURE MEDICINE
  • 2019-03-13. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups in NATURE
  • 2012-04-18. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups in NATURE
  • 2018-02-14. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis in NATURE
  • 2004-10. Hallmarks of 'BRCAness' in sporadic cancers in NATURE REVIEWS CANCER
  • 2016-05-02. Landscape of somatic mutations in 560 breast cancer whole-genome sequences in NATURE
  • 2016-01-19. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer in BREAST CANCER RESEARCH
  • 2014-02-11. PD-1+ immune cell infiltration inversely correlates with survival of operable breast cancer patients in CANCER IMMUNOLOGY, IMMUNOTHERAPY
  • 2007-06-20. Epidemiology of basal-like breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2016-05-10. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes in NATURE COMMUNICATIONS
  • 2006-09-25. Basal-like breast cancer and the BRCA1 phenotype in ONCOGENE
  • 2012-09-23. Comprehensive molecular portraits of human breast tumours in NATURE
  • 2010-09-02. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer in BREAST CANCER RESEARCH
  • 2018-02-14. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells in NATURE
  • 2013-05-05. The shaping and functional consequences of the microRNA landscape in breast cancer in NATURE
  • 2019-01-31. A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling in BREAST CANCER RESEARCH
  • 2017-12-16. Multi-omic approach decodes paradoxes of the triple-negative breast cancer: lessons for predictive, preventive and personalised medicine in AMINO ACIDS
  • 2017-08-02. Integrative clinical genomics of metastatic cancer in NATURE
  • 2017-10-23. PARP Inhibitors in the Treatment of Triple-Negative Breast Cancer in CLINICAL PHARMACOKINETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-55710-w

    DOI

    http://dx.doi.org/10.1038/s41598-019-55710-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1123343360

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31836816


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "PTEN Phosphohydrolase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proto-Oncogene Proteins c-myc", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Androgen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retinoblastoma Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triple Negative Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Suppressor Protein p53", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ubiquitin-Protein Ligases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Wnt Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.417184.f", 
              "name": [
                "Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Dong-Yu", 
            "id": "sg:person.0616357160.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616357160.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.417184.f", 
              "name": [
                "Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Zhe", 
            "id": "sg:person.01247402472.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247402472.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China", 
              "id": "http://www.grid.ac/institutes/grid.413458.f", 
              "name": [
                "The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, 550014, Guiyang, Guizhou, China", 
                "State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ben-David", 
            "givenName": "Yaacov", 
            "id": "sg:person.01211666037.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211666037.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.250674.2", 
              "name": [
                "Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woodgett", 
            "givenName": "James R.", 
            "id": "sg:person.0731233037.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada", 
                "Department of Medicine, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zacksenhaus", 
            "givenName": "Eldad", 
            "id": "sg:person.0774554325.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774554325.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrc1457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042257134", 
              "https://doi.org/10.1038/nrc1457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101019929", 
              "https://doi.org/10.1038/nature25501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027957670", 
              "https://doi.org/10.1038/nature12108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-019-1098-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111832587", 
              "https://doi.org/10.1186/s13058-019-1098-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014607335", 
              "https://doi.org/10.1038/nature10983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00262-014-1519-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007345492", 
              "https://doi.org/10.1007/s00262-014-1519-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050455938", 
              "https://doi.org/10.1038/ncomms11479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1007-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112734617", 
              "https://doi.org/10.1038/s41586-019-1007-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40262-017-0587-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092333334", 
              "https://doi.org/10.1007/s40262-017-0587-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925987", 
              "https://doi.org/10.1038/nature17676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-017-2524-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099687392", 
              "https://doi.org/10.1007/s00726-017-2524-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090945552", 
              "https://doi.org/10.1038/nature23306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-007-9632-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039484580", 
              "https://doi.org/10.1007/s10549-007-9632-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032799121", 
              "https://doi.org/10.1186/bcr2635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024942368", 
              "https://doi.org/10.1038/nature11412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-015-0668-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035171367", 
              "https://doi.org/10.1186/s13058-015-0668-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101019927", 
              "https://doi.org/10.1038/nature25492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045151043", 
              "https://doi.org/10.1038/nm.2000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013818277", 
              "https://doi.org/10.1038/sj.onc.1209876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12-13", 
        "datePublishedReg": "2019-12-13", 
        "description": "Triple-negative breast cancer (TNBC) has been subdivided into six distinct subgroups: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem\u2013like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR). We recently identified a subgroup of TNBC with loss of the tumor suppressor PTEN and five specific microRNAs that exhibits exceedingly poor clinical outcome and contains TP53 mutation, RB1 loss and high MYC and WNT signalling. Here, show that these PTEN-low/miRNA-low lesions cluster with BL1 TNBC. These tumors exhibited high RhoA signalling and were significantly stratified on the basis of PTEN-low/RhoA-signalling-high with hazard ratios (HRs) of 8.2 (P\u2009=\u20090.0009) and 4.87 (P\u2009=\u20090.033) in training and test cohorts, respectively. For BL2 TNBC, we identified AKT1 copy gain/high mRNA expression as surrogate for poor prognosis (HR\u2009=\u20093.9; P\u2009=\u20090.02 and HR\u2009=\u20096.1; P\u2009=\u20090.0032). In IM, programmed cell death 1 (PD1) was elevated and predictive of poor prognosis (HR\u2009=\u20095.3; P\u2009=\u20090.01 and HR\u2009=\u20093.5; P\u2009<\u20090.004). Additional alterations, albeit without prognostic power, characterized each subtype including high E2F2 and TGF\u03b2 signalling and CXCL8 expression in BL2, high IFN\u03b1 and IFN\u03b3 signalling and CTLA4 expression in IM, and high EGFR signalling in MSL, and may be targeted for therapy. This study identified PTEN-low/RhoA-signalling-high, and high AKT1 and PD1 expression as potent prognostications for BL1, BL2 and IM subtypes with survival differences of over 14, 2.75 and 10.5 years, respectively. This intrinsic heterogeneity could be exploited to prioritize patients for precision medicine.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-55710-w", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "triple-negative breast cancer", 
          "luminal androgen receptor", 
          "hazard ratio", 
          "poor prognosis", 
          "subgroups of TNBC", 
          "triple-negative breast cancer subtype", 
          "poor clinical outcome", 
          "cell death 1", 
          "breast cancer subtypes", 
          "higher mRNA expression", 
          "high IFN\u03b1", 
          "PD1 expression", 
          "clinical outcomes", 
          "death-1", 
          "higher eGFR", 
          "survival differences", 
          "CTLA4 expression", 
          "androgen receptor", 
          "IM subtypes", 
          "CXCL8 expression", 
          "breast cancer", 
          "prognostic power", 
          "test cohort", 
          "TP53 mutations", 
          "cancer subtypes", 
          "RB1 loss", 
          "molecular stratification", 
          "mRNA expression", 
          "high Akt1", 
          "immunomodulatory", 
          "high MYC", 
          "subtypes", 
          "additional alterations", 
          "precision medicine", 
          "distinct subgroups", 
          "prognosis", 
          "tumor suppressor PTEN", 
          "specific microRNAs", 
          "RhoA signaling", 
          "subgroups", 
          "expression", 
          "suppressor PTEN", 
          "AKT1", 
          "IFN\u03b3", 
          "patients", 
          "IFN\u03b1", 
          "therapy", 
          "lesions", 
          "cohort", 
          "tumors", 
          "EGFR", 
          "cancer", 
          "prognostication", 
          "receptors", 
          "TGF\u03b2", 
          "outcomes", 
          "PTEN", 
          "alterations", 
          "E2F2", 
          "Wnt", 
          "signaling", 
          "medicine", 
          "loss", 
          "BL2", 
          "MYC", 
          "microRNAs", 
          "stratification", 
          "years", 
          "mutations", 
          "differences", 
          "study", 
          "intrinsic heterogeneity", 
          "training", 
          "heterogeneity", 
          "BL1", 
          "ratio", 
          "basis", 
          "MSL", 
          "power"
        ], 
        "name": "Molecular stratification within triple-negative breast cancer subtypes", 
        "pagination": "19107", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1123343360"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-55710-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31836816"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-55710-w", 
          "https://app.dimensions.ai/details/publication/pub.1123343360"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_811.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-55710-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55710-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55710-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55710-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55710-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    334 TRIPLES      21 PREDICATES      143 URIs      116 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-55710-w schema:about N05b28aa2828f4c78be089dc580300155
    2 N06915cecd5e74f558710516cc1ba225c
    3 N257626af4e004ca7b4a41c9a9939fd0f
    4 N27a35d360cd343299c4e44d2411330f5
    5 N2e76f578671b44c7ae491f6fbaf782a8
    6 N413c3ef707594b279629b934e4f9fbdd
    7 N484af22ea3fd47088d382a38149235be
    8 N52a2785a05f04261b376d5072c20d542
    9 N7451182fa807414c82eba1c7ce66b838
    10 N7495966e4a0849efbabf92b9c2efef78
    11 N75c0f3d75c0c42409aa1f89ef68b8003
    12 N95db8e7dfc864a3a940c5bd2791181c2
    13 Na15635012ff74419816f66f6a25fc78b
    14 Nad30b7b08dd640a1a2aeffdd65144d9b
    15 Nada5eb991f7b48cc8ba4095279127d07
    16 Ne8bed31ada6446c0afbfcf48c87e0fb0
    17 Nea9a446ec8504c36b7ba7c0017f60dac
    18 Nf60cd5da59a24acda9aa45de58b938b6
    19 Nf6d1369163c347dd912ece19b332109b
    20 Nfd03a26fdf57406c831590fa1d3ac2d5
    21 anzsrc-for:11
    22 anzsrc-for:1112
    23 schema:author Nf635efcf7153426e96357b24b8eb80c1
    24 schema:citation sg:pub.10.1007/s00262-014-1519-x
    25 sg:pub.10.1007/s00726-017-2524-0
    26 sg:pub.10.1007/s10549-007-9632-6
    27 sg:pub.10.1007/s40262-017-0587-4
    28 sg:pub.10.1038/nature10983
    29 sg:pub.10.1038/nature11412
    30 sg:pub.10.1038/nature12108
    31 sg:pub.10.1038/nature17676
    32 sg:pub.10.1038/nature23306
    33 sg:pub.10.1038/nature25492
    34 sg:pub.10.1038/nature25501
    35 sg:pub.10.1038/ncomms11479
    36 sg:pub.10.1038/nm.2000
    37 sg:pub.10.1038/nrc1457
    38 sg:pub.10.1038/s41586-019-1007-8
    39 sg:pub.10.1038/sj.onc.1209876
    40 sg:pub.10.1186/bcr2635
    41 sg:pub.10.1186/s13058-015-0668-y
    42 sg:pub.10.1186/s13058-019-1098-z
    43 schema:datePublished 2019-12-13
    44 schema:datePublishedReg 2019-12-13
    45 schema:description Triple-negative breast cancer (TNBC) has been subdivided into six distinct subgroups: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem–like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR). We recently identified a subgroup of TNBC with loss of the tumor suppressor PTEN and five specific microRNAs that exhibits exceedingly poor clinical outcome and contains TP53 mutation, RB1 loss and high MYC and WNT signalling. Here, show that these PTEN-low/miRNA-low lesions cluster with BL1 TNBC. These tumors exhibited high RhoA signalling and were significantly stratified on the basis of PTEN-low/RhoA-signalling-high with hazard ratios (HRs) of 8.2 (P = 0.0009) and 4.87 (P = 0.033) in training and test cohorts, respectively. For BL2 TNBC, we identified AKT1 copy gain/high mRNA expression as surrogate for poor prognosis (HR = 3.9; P = 0.02 and HR = 6.1; P = 0.0032). In IM, programmed cell death 1 (PD1) was elevated and predictive of poor prognosis (HR = 5.3; P = 0.01 and HR = 3.5; P < 0.004). Additional alterations, albeit without prognostic power, characterized each subtype including high E2F2 and TGFβ signalling and CXCL8 expression in BL2, high IFNα and IFNγ signalling and CTLA4 expression in IM, and high EGFR signalling in MSL, and may be targeted for therapy. This study identified PTEN-low/RhoA-signalling-high, and high AKT1 and PD1 expression as potent prognostications for BL1, BL2 and IM subtypes with survival differences of over 14, 2.75 and 10.5 years, respectively. This intrinsic heterogeneity could be exploited to prioritize patients for precision medicine.
    46 schema:genre article
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N84298e2f16d848bc86070d9832bbe069
    49 Nf58f26d9972d43efa807e63085d60513
    50 sg:journal.1045337
    51 schema:keywords AKT1
    52 BL1
    53 BL2
    54 CTLA4 expression
    55 CXCL8 expression
    56 E2F2
    57 EGFR
    58 IFNα
    59 IFNγ
    60 IM subtypes
    61 MSL
    62 MYC
    63 PD1 expression
    64 PTEN
    65 RB1 loss
    66 RhoA signaling
    67 TGFβ
    68 TP53 mutations
    69 Wnt
    70 additional alterations
    71 alterations
    72 androgen receptor
    73 basis
    74 breast cancer
    75 breast cancer subtypes
    76 cancer
    77 cancer subtypes
    78 cell death 1
    79 clinical outcomes
    80 cohort
    81 death-1
    82 differences
    83 distinct subgroups
    84 expression
    85 hazard ratio
    86 heterogeneity
    87 high Akt1
    88 high IFNα
    89 high MYC
    90 higher eGFR
    91 higher mRNA expression
    92 immunomodulatory
    93 intrinsic heterogeneity
    94 lesions
    95 loss
    96 luminal androgen receptor
    97 mRNA expression
    98 medicine
    99 microRNAs
    100 molecular stratification
    101 mutations
    102 outcomes
    103 patients
    104 poor clinical outcome
    105 poor prognosis
    106 power
    107 precision medicine
    108 prognosis
    109 prognostic power
    110 prognostication
    111 ratio
    112 receptors
    113 signaling
    114 specific microRNAs
    115 stratification
    116 study
    117 subgroups
    118 subgroups of TNBC
    119 subtypes
    120 suppressor PTEN
    121 survival differences
    122 test cohort
    123 therapy
    124 training
    125 triple-negative breast cancer
    126 triple-negative breast cancer subtype
    127 tumor suppressor PTEN
    128 tumors
    129 years
    130 schema:name Molecular stratification within triple-negative breast cancer subtypes
    131 schema:pagination 19107
    132 schema:productId Nb472e4cbb3aa4b76a691f790b16d45eb
    133 Ne920079c9a264b428ca51d05ce09b39d
    134 Nf5b57562b1934f4a80176ad1273a9e68
    135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123343360
    136 https://doi.org/10.1038/s41598-019-55710-w
    137 schema:sdDatePublished 2022-09-02T16:03
    138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    139 schema:sdPublisher N2afee869cd4542c59753861e27030cd3
    140 schema:url https://doi.org/10.1038/s41598-019-55710-w
    141 sgo:license sg:explorer/license/
    142 sgo:sdDataset articles
    143 rdf:type schema:ScholarlyArticle
    144 N05b28aa2828f4c78be089dc580300155 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Humans
    146 rdf:type schema:DefinedTerm
    147 N06915cecd5e74f558710516cc1ba225c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Gene Expression Regulation, Neoplastic
    149 rdf:type schema:DefinedTerm
    150 N257626af4e004ca7b4a41c9a9939fd0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Female
    152 rdf:type schema:DefinedTerm
    153 N27a35d360cd343299c4e44d2411330f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Prognosis
    155 rdf:type schema:DefinedTerm
    156 N2afee869cd4542c59753861e27030cd3 schema:name Springer Nature - SN SciGraph project
    157 rdf:type schema:Organization
    158 N2e76f578671b44c7ae491f6fbaf782a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name PTEN Phosphohydrolase
    160 rdf:type schema:DefinedTerm
    161 N413c3ef707594b279629b934e4f9fbdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Ubiquitin-Protein Ligases
    163 rdf:type schema:DefinedTerm
    164 N484af22ea3fd47088d382a38149235be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Databases, Factual
    166 rdf:type schema:DefinedTerm
    167 N52a2785a05f04261b376d5072c20d542 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Tumor Suppressor Protein p53
    169 rdf:type schema:DefinedTerm
    170 N7451182fa807414c82eba1c7ce66b838 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Gene Expression Profiling
    172 rdf:type schema:DefinedTerm
    173 N7495966e4a0849efbabf92b9c2efef78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Wnt Proteins
    175 rdf:type schema:DefinedTerm
    176 N75c0f3d75c0c42409aa1f89ef68b8003 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Signal Transduction
    178 rdf:type schema:DefinedTerm
    179 N84298e2f16d848bc86070d9832bbe069 schema:issueNumber 1
    180 rdf:type schema:PublicationIssue
    181 N95db8e7dfc864a3a940c5bd2791181c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Triple Negative Breast Neoplasms
    183 rdf:type schema:DefinedTerm
    184 N969a92fd48ee4979a488246dbc513791 rdf:first sg:person.01247402472.52
    185 rdf:rest Nb61a4d9748a749caa3341144d46d8587
    186 N9bd0fe50e2ba4feab98beaab42b2c807 rdf:first sg:person.0774554325.71
    187 rdf:rest rdf:nil
    188 Na15635012ff74419816f66f6a25fc78b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name MicroRNAs
    190 rdf:type schema:DefinedTerm
    191 Nad30b7b08dd640a1a2aeffdd65144d9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Computational Biology
    193 rdf:type schema:DefinedTerm
    194 Nada5eb991f7b48cc8ba4095279127d07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Cluster Analysis
    196 rdf:type schema:DefinedTerm
    197 Nb472e4cbb3aa4b76a691f790b16d45eb schema:name doi
    198 schema:value 10.1038/s41598-019-55710-w
    199 rdf:type schema:PropertyValue
    200 Nb61a4d9748a749caa3341144d46d8587 rdf:first sg:person.01211666037.43
    201 rdf:rest Nb89c747e126e4185b81ef6ec67042694
    202 Nb89c747e126e4185b81ef6ec67042694 rdf:first sg:person.0731233037.88
    203 rdf:rest N9bd0fe50e2ba4feab98beaab42b2c807
    204 Ne8bed31ada6446c0afbfcf48c87e0fb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Proto-Oncogene Proteins c-myc
    206 rdf:type schema:DefinedTerm
    207 Ne920079c9a264b428ca51d05ce09b39d schema:name dimensions_id
    208 schema:value pub.1123343360
    209 rdf:type schema:PropertyValue
    210 Nea9a446ec8504c36b7ba7c0017f60dac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Treatment Outcome
    212 rdf:type schema:DefinedTerm
    213 Nf58f26d9972d43efa807e63085d60513 schema:volumeNumber 9
    214 rdf:type schema:PublicationVolume
    215 Nf5b57562b1934f4a80176ad1273a9e68 schema:name pubmed_id
    216 schema:value 31836816
    217 rdf:type schema:PropertyValue
    218 Nf60cd5da59a24acda9aa45de58b938b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Gene Dosage
    220 rdf:type schema:DefinedTerm
    221 Nf635efcf7153426e96357b24b8eb80c1 rdf:first sg:person.0616357160.41
    222 rdf:rest N969a92fd48ee4979a488246dbc513791
    223 Nf6d1369163c347dd912ece19b332109b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    224 schema:name Retinoblastoma Binding Proteins
    225 rdf:type schema:DefinedTerm
    226 Nfd03a26fdf57406c831590fa1d3ac2d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    227 schema:name Receptors, Androgen
    228 rdf:type schema:DefinedTerm
    229 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    230 schema:name Medical and Health Sciences
    231 rdf:type schema:DefinedTerm
    232 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    233 schema:name Oncology and Carcinogenesis
    234 rdf:type schema:DefinedTerm
    235 sg:journal.1045337 schema:issn 2045-2322
    236 schema:name Scientific Reports
    237 schema:publisher Springer Nature
    238 rdf:type schema:Periodical
    239 sg:person.01211666037.43 schema:affiliation grid-institutes:grid.413458.f
    240 schema:familyName Ben-David
    241 schema:givenName Yaacov
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211666037.43
    243 rdf:type schema:Person
    244 sg:person.01247402472.52 schema:affiliation grid-institutes:grid.417184.f
    245 schema:familyName Jiang
    246 schema:givenName Zhe
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247402472.52
    248 rdf:type schema:Person
    249 sg:person.0616357160.41 schema:affiliation grid-institutes:grid.417184.f
    250 schema:familyName Wang
    251 schema:givenName Dong-Yu
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616357160.41
    253 rdf:type schema:Person
    254 sg:person.0731233037.88 schema:affiliation grid-institutes:grid.250674.2
    255 schema:familyName Woodgett
    256 schema:givenName James R.
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88
    258 rdf:type schema:Person
    259 sg:person.0774554325.71 schema:affiliation grid-institutes:grid.17063.33
    260 schema:familyName Zacksenhaus
    261 schema:givenName Eldad
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774554325.71
    263 rdf:type schema:Person
    264 sg:pub.10.1007/s00262-014-1519-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007345492
    265 https://doi.org/10.1007/s00262-014-1519-x
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s00726-017-2524-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099687392
    268 https://doi.org/10.1007/s00726-017-2524-0
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s10549-007-9632-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039484580
    271 https://doi.org/10.1007/s10549-007-9632-6
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s40262-017-0587-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092333334
    274 https://doi.org/10.1007/s40262-017-0587-4
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nature10983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014607335
    277 https://doi.org/10.1038/nature10983
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nature11412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942368
    280 https://doi.org/10.1038/nature11412
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nature12108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027957670
    283 https://doi.org/10.1038/nature12108
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nature17676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925987
    286 https://doi.org/10.1038/nature17676
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nature23306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090945552
    289 https://doi.org/10.1038/nature23306
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nature25492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019927
    292 https://doi.org/10.1038/nature25492
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nature25501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019929
    295 https://doi.org/10.1038/nature25501
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/ncomms11479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050455938
    298 https://doi.org/10.1038/ncomms11479
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nm.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045151043
    301 https://doi.org/10.1038/nm.2000
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nrc1457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042257134
    304 https://doi.org/10.1038/nrc1457
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/s41586-019-1007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112734617
    307 https://doi.org/10.1038/s41586-019-1007-8
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/sj.onc.1209876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013818277
    310 https://doi.org/10.1038/sj.onc.1209876
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/bcr2635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032799121
    313 https://doi.org/10.1186/bcr2635
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/s13058-015-0668-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035171367
    316 https://doi.org/10.1186/s13058-015-0668-y
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/s13058-019-1098-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1111832587
    319 https://doi.org/10.1186/s13058-019-1098-z
    320 rdf:type schema:CreativeWork
    321 grid-institutes:grid.17063.33 schema:alternateName Department of Medicine, University of Toronto, Toronto, Ontario, Canada
    322 schema:name Department of Medicine, University of Toronto, Toronto, Ontario, Canada
    323 Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada
    324 rdf:type schema:Organization
    325 grid-institutes:grid.250674.2 schema:alternateName Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
    326 schema:name Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
    327 rdf:type schema:Organization
    328 grid-institutes:grid.413458.f schema:alternateName State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China
    329 schema:name State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China
    330 The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, 550014, Guiyang, Guizhou, China
    331 rdf:type schema:Organization
    332 grid-institutes:grid.417184.f schema:alternateName Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada
    333 schema:name Toronto General Research Institute, University Health Network, 67 College Street, M5G 2M1, Toronto, Ontario, Canada
    334 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...