Modeling and Optimizing Medium Composition for Shoot Regeneration of Chrysanthemum via Radial Basis Function-Non-dominated Sorting Genetic Algorithm-II (RBF-NSGAII) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12-03

AUTHORS

Mohsen Hesami, Roohangiz Naderi, Masoud Tohidfar

ABSTRACT

The aim of the current study was modeling and optimizing medium compositions for shoot proliferation of chrysanthemum, as a case study, through radial basis function- non-dominated sorting genetic algorithm-II (RBF-NSGAII). RBF as one of the artificial neural networks (ANNs) was used for modeling four outputs including proliferation rate (PR), shoot number (SN), shoot length (SL), and basal callus weight (BCW) based on four variables including 6-benzylaminopurine (BAP), indole-3-butyric acid (IBA), phloroglucinol (PG), and sucrose. Afterward, models were linked to the optimization algorithm. Also, sensitivity analysis was applied for evaluating the importance of each input. The R2 correlation values of 0.88, 0.91, 0.97, and 0.76 between observed and predicted data were obtained for PR, SN, SL, and BCW, respectively. According to RBF-NSGAII, optimal PR (98.85%), SN (13.32), SL (4.83 cm), and BCW (0.08 g) can be obtained from a medium containing 2.16 µM BAP, 0.14 µM IBA, 0.29 mM PG, and 87.63 mM sucrose. The results of sensitivity analysis indicated that PR, SN, and SL were more sensitive to BAP, followed by sucrose, PG, and IBA. Finally, the performance of predicted and optimized medium compositions were tested, and results showed that the difference between the validation data and RBF-NSGAII predicted and optimized data were negligible. Generally, RBF-NSGAII can be considered as an efficient computational strategy for modeling and optimizing in vitro organogenesis. More... »

PAGES

18237

References to SciGraph publications

  • 2015-03-19. Optimization of factors affecting efficient shoot regeneration in chrysanthemum cv. Shinma in BRAZILIAN JOURNAL OF BOTANY
  • 2018-04-17. An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa in JOURNAL OF FORESTRY RESEARCH
  • 2017-02. Sodium nitroprusside stimulates growth and shoot regeneration in chrysanthemum in HORTICULTURE, ENVIRONMENT, AND BIOTECHNOLOGY
  • 1990-04. Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.) in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2011-07-08. Enhanced shoot multiplication in Ficus religiosa L. in the presence of adenine sulphate, glutamine and phloroglucinol in PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS
  • 2000-02. Phloroglucinol enhances growth and rate of axillary shoot proliferation in potato shoot tip cultures in vitro in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2015-01-21. Monthly and seasonal drought forecasting using statistical neural networks in ENVIRONMENTAL EARTH SCIENCES
  • 2018-07-02. Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm in SCIENTIFIC REPORTS
  • 2011-06-03. Efficiency of shoot regeneration from leaf, stem, petiole and petal explants of six cultivars of Chrysanthemum morifolium in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 1998-10. Promotion by phloroglucinol of micropropagation of Minuartia valentina, an endangered and endemic Spanish plant in PLANT GROWTH REGULATION
  • 1990-05. Efficient, direct plant regeneration from stem segments of chrysanthemum (Chrysanthemum morifolium Ramat. cv. Royal Purple) in PLANT CELL REPORTS
  • 2017-11-20. Effect of plant growth regulators on indirect shoot organogenesis of Ficus religiosa through seedling derived petiole segments in JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY
  • 2018-06-26. Indirect Organogenesis through Seedling-Derived Leaf Segments of Ficus Religiosa - a Multipurpose Woody Medicinal Plant in JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY
  • 2000-09. Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech cultures in PLANT GROWTH REGULATION
  • 2013-01-26. Phloroglucinol in plant tissue culture in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 2015-01-28. Regeneration from chrysanthemum flowers: a review in ACTA PHYSIOLOGIAE PLANTARUM
  • 2011-01-06. Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’ in PLANT GROWTH REGULATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-54257-0

    DOI

    http://dx.doi.org/10.1038/s41598-019-54257-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1123087671

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31796784


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chrysanthemum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crop Production", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks, Computer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phloroglucinol", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Growth Regulators", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Shoots", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sucrose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tissue Culture Techniques", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hesami", 
            "givenName": "Mohsen", 
            "id": "sg:person.010152317512.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152317512.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naderi", 
            "givenName": "Roohangiz", 
            "id": "sg:person.01153604677.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153604677.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412502.0", 
              "name": [
                "Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tohidfar", 
            "givenName": "Masoud", 
            "id": "sg:person.01126177703.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11240-011-9980-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034284606", 
              "https://doi.org/10.1007/s11240-011-9980-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27858-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105156445", 
              "https://doi.org/10.1038/s41598-018-27858-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006329510280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014821690", 
              "https://doi.org/10.1023/a:1006329510280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13580-017-0070-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084037208", 
              "https://doi.org/10.1007/s13580-017-0070-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-013-9491-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019713927", 
              "https://doi.org/10.1007/s11627-013-9491-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-015-4047-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038107522", 
              "https://doi.org/10.1007/s12665-015-4047-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12892-018-0024-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105137322", 
              "https://doi.org/10.1007/s12892-018-0024-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10725-010-9555-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040567296", 
              "https://doi.org/10.1007/s10725-010-9555-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006050122173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016316309", 
              "https://doi.org/10.1023/a:1006050122173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40415-015-0143-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034002623", 
              "https://doi.org/10.1007/s40415-015-0143-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jgeb.2017.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092827065", 
              "https://doi.org/10.1016/j.jgeb.2017.11.001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12298-011-0074-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024704506", 
              "https://doi.org/10.1007/s12298-011-0074-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00034487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019902849", 
              "https://doi.org/10.1007/bf00034487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11738-015-1773-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030342751", 
              "https://doi.org/10.1007/s11738-015-1773-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00272106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039095051", 
              "https://doi.org/10.1007/bf00272106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11676-018-0647-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103399790", 
              "https://doi.org/10.1007/s11676-018-0647-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006419805980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003204763", 
              "https://doi.org/10.1023/a:1006419805980"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12-03", 
        "datePublishedReg": "2019-12-03", 
        "description": "The aim of the current study was modeling and optimizing medium compositions for shoot proliferation of chrysanthemum, as a case study, through radial basis function- non-dominated sorting genetic algorithm-II (RBF-NSGAII). RBF as one of the artificial neural networks (ANNs) was used for modeling four outputs including proliferation rate (PR), shoot number (SN), shoot length (SL), and basal callus weight (BCW) based on four variables including 6-benzylaminopurine (BAP), indole-3-butyric acid (IBA), phloroglucinol (PG), and sucrose. Afterward, models were linked to the optimization algorithm. Also, sensitivity analysis was applied for evaluating the importance of each input. The R2 correlation values of 0.88, 0.91, 0.97, and 0.76 between observed and predicted data were obtained for PR, SN, SL, and BCW, respectively. According to RBF-NSGAII, optimal PR (98.85%), SN (13.32), SL (4.83\u2009cm), and BCW (0.08\u2009g) can be obtained from a medium containing 2.16\u2009\u00b5M BAP, 0.14\u2009\u00b5M IBA, 0.29\u2009mM PG, and 87.63\u2009mM sucrose. The results of sensitivity analysis indicated that PR, SN, and SL were more sensitive to BAP, followed by sucrose, PG, and IBA. Finally, the performance of predicted and optimized medium compositions were tested, and results showed that the difference between the validation data and RBF-NSGAII predicted and optimized data were negligible. Generally, RBF-NSGAII can be considered as an efficient computational strategy for modeling and optimizing in vitro organogenesis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-54257-0", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "genetic algorithm II", 
          "algorithm II", 
          "efficient computational strategy", 
          "Sorting Genetic Algorithm II", 
          "artificial neural network", 
          "optimization algorithm", 
          "radial basis", 
          "sensitivity analysis", 
          "R2 correlation values", 
          "optimal proliferation rate", 
          "computational strategy", 
          "neural network", 
          "algorithm", 
          "modeling", 
          "case study", 
          "RBF", 
          "model", 
          "validation data", 
          "optimizing", 
          "network", 
          "output", 
          "variables", 
          "input", 
          "correlation values", 
          "data", 
          "results", 
          "number", 
          "analysis", 
          "Sn", 
          "performance", 
          "basis", 
          "length", 
          "values", 
          "medium", 
          "importance", 
          "strategies", 
          "study", 
          "medium composition", 
          "composition", 
          "rate", 
          "weight", 
          "aim", 
          "differences", 
          "current study", 
          "proliferation", 
          "proliferation rate", 
          "callus weight", 
          "shoot length", 
          "indole-3-butyric acid", 
          "vitro organogenesis", 
          "shoot proliferation", 
          "chrysanthemum", 
          "acid", 
          "phloroglucinol", 
          "BAP", 
          "mM phloroglucinol", 
          "mM sucrose", 
          "sucrose", 
          "organogenesis", 
          "shoot regeneration", 
          "regeneration"
        ], 
        "name": "Modeling and Optimizing Medium Composition for Shoot Regeneration of Chrysanthemum via Radial Basis Function-Non-dominated Sorting Genetic Algorithm-II (RBF-NSGAII)", 
        "pagination": "18237", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1123087671"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-54257-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31796784"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-54257-0", 
          "https://app.dimensions.ai/details/publication/pub.1123087671"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_828.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-54257-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-54257-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-54257-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-54257-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-54257-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      21 PREDICATES      112 URIs      87 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-54257-0 schema:about N02fd98a0991f4101a54b592aac2a2298
    2 N259dced170bd4ba68ba8063b17908ab9
    3 N7dd5d09ca5ea405ead9d3bb6be756cc5
    4 Naa8c69c110814348b2e8da2de143de11
    5 Nb72eb0d0dd034c219538f00c6adedf2a
    6 Ndc497c1fca07492f8c1039a5be442f38
    7 Ne4f2ef0ab1974069b31f3a415ce7c82e
    8 Nea374daa14c84e1ca03e4a2833af0645
    9 Ned157ffab3dd4a11abae0e3bf33f44f6
    10 anzsrc-for:08
    11 anzsrc-for:0801
    12 schema:author Nbe9731a2fe434f66badab7ba1ef4ca15
    13 schema:citation sg:pub.10.1007/bf00034487
    14 sg:pub.10.1007/bf00272106
    15 sg:pub.10.1007/s10725-010-9555-9
    16 sg:pub.10.1007/s11240-011-9980-0
    17 sg:pub.10.1007/s11627-013-9491-2
    18 sg:pub.10.1007/s11676-018-0647-0
    19 sg:pub.10.1007/s11738-015-1773-3
    20 sg:pub.10.1007/s12298-011-0074-6
    21 sg:pub.10.1007/s12665-015-4047-x
    22 sg:pub.10.1007/s12892-018-0024-0
    23 sg:pub.10.1007/s13580-017-0070-z
    24 sg:pub.10.1007/s40415-015-0143-0
    25 sg:pub.10.1016/j.jgeb.2017.11.001
    26 sg:pub.10.1023/a:1006050122173
    27 sg:pub.10.1023/a:1006329510280
    28 sg:pub.10.1023/a:1006419805980
    29 sg:pub.10.1038/s41598-018-27858-4
    30 schema:datePublished 2019-12-03
    31 schema:datePublishedReg 2019-12-03
    32 schema:description The aim of the current study was modeling and optimizing medium compositions for shoot proliferation of chrysanthemum, as a case study, through radial basis function- non-dominated sorting genetic algorithm-II (RBF-NSGAII). RBF as one of the artificial neural networks (ANNs) was used for modeling four outputs including proliferation rate (PR), shoot number (SN), shoot length (SL), and basal callus weight (BCW) based on four variables including 6-benzylaminopurine (BAP), indole-3-butyric acid (IBA), phloroglucinol (PG), and sucrose. Afterward, models were linked to the optimization algorithm. Also, sensitivity analysis was applied for evaluating the importance of each input. The R2 correlation values of 0.88, 0.91, 0.97, and 0.76 between observed and predicted data were obtained for PR, SN, SL, and BCW, respectively. According to RBF-NSGAII, optimal PR (98.85%), SN (13.32), SL (4.83 cm), and BCW (0.08 g) can be obtained from a medium containing 2.16 µM BAP, 0.14 µM IBA, 0.29 mM PG, and 87.63 mM sucrose. The results of sensitivity analysis indicated that PR, SN, and SL were more sensitive to BAP, followed by sucrose, PG, and IBA. Finally, the performance of predicted and optimized medium compositions were tested, and results showed that the difference between the validation data and RBF-NSGAII predicted and optimized data were negligible. Generally, RBF-NSGAII can be considered as an efficient computational strategy for modeling and optimizing in vitro organogenesis.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N7812b74d580e43c68e163270f839d8d4
    36 Nb6cf3e95a32941aa903e12ea75b170e5
    37 sg:journal.1045337
    38 schema:keywords BAP
    39 R2 correlation values
    40 RBF
    41 Sn
    42 Sorting Genetic Algorithm II
    43 acid
    44 aim
    45 algorithm
    46 algorithm II
    47 analysis
    48 artificial neural network
    49 basis
    50 callus weight
    51 case study
    52 chrysanthemum
    53 composition
    54 computational strategy
    55 correlation values
    56 current study
    57 data
    58 differences
    59 efficient computational strategy
    60 genetic algorithm II
    61 importance
    62 indole-3-butyric acid
    63 input
    64 length
    65 mM phloroglucinol
    66 mM sucrose
    67 medium
    68 medium composition
    69 model
    70 modeling
    71 network
    72 neural network
    73 number
    74 optimal proliferation rate
    75 optimization algorithm
    76 optimizing
    77 organogenesis
    78 output
    79 performance
    80 phloroglucinol
    81 proliferation
    82 proliferation rate
    83 radial basis
    84 rate
    85 regeneration
    86 results
    87 sensitivity analysis
    88 shoot length
    89 shoot proliferation
    90 shoot regeneration
    91 strategies
    92 study
    93 sucrose
    94 validation data
    95 values
    96 variables
    97 vitro organogenesis
    98 weight
    99 schema:name Modeling and Optimizing Medium Composition for Shoot Regeneration of Chrysanthemum via Radial Basis Function-Non-dominated Sorting Genetic Algorithm-II (RBF-NSGAII)
    100 schema:pagination 18237
    101 schema:productId Na003a616cc534bc9a5231ecce9d7a395
    102 Ne9a6f3a513814cec9b5185a1d85e7c14
    103 Nfc01aac26d0c4e67adb1e11d6570f9d1
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123087671
    105 https://doi.org/10.1038/s41598-019-54257-0
    106 schema:sdDatePublished 2022-12-01T06:40
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N5d467b4f57ac4d158c61f164032581c4
    109 schema:url https://doi.org/10.1038/s41598-019-54257-0
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N00b4774765ea4f0fb597aa9a776f9971 rdf:first sg:person.01153604677.50
    114 rdf:rest N041bea3fd1284b44afa9ddd962fe9ad7
    115 N02fd98a0991f4101a54b592aac2a2298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Neural Networks, Computer
    117 rdf:type schema:DefinedTerm
    118 N041bea3fd1284b44afa9ddd962fe9ad7 rdf:first sg:person.01126177703.58
    119 rdf:rest rdf:nil
    120 N259dced170bd4ba68ba8063b17908ab9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Sucrose
    122 rdf:type schema:DefinedTerm
    123 N5d467b4f57ac4d158c61f164032581c4 schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 N7812b74d580e43c68e163270f839d8d4 schema:issueNumber 1
    126 rdf:type schema:PublicationIssue
    127 N7dd5d09ca5ea405ead9d3bb6be756cc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Tissue Culture Techniques
    129 rdf:type schema:DefinedTerm
    130 Na003a616cc534bc9a5231ecce9d7a395 schema:name doi
    131 schema:value 10.1038/s41598-019-54257-0
    132 rdf:type schema:PropertyValue
    133 Naa8c69c110814348b2e8da2de143de11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Plant Growth Regulators
    135 rdf:type schema:DefinedTerm
    136 Nb6cf3e95a32941aa903e12ea75b170e5 schema:volumeNumber 9
    137 rdf:type schema:PublicationVolume
    138 Nb72eb0d0dd034c219538f00c6adedf2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Crop Production
    140 rdf:type schema:DefinedTerm
    141 Nbe9731a2fe434f66badab7ba1ef4ca15 rdf:first sg:person.010152317512.72
    142 rdf:rest N00b4774765ea4f0fb597aa9a776f9971
    143 Ndc497c1fca07492f8c1039a5be442f38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Algorithms
    145 rdf:type schema:DefinedTerm
    146 Ne4f2ef0ab1974069b31f3a415ce7c82e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Chrysanthemum
    148 rdf:type schema:DefinedTerm
    149 Ne9a6f3a513814cec9b5185a1d85e7c14 schema:name dimensions_id
    150 schema:value pub.1123087671
    151 rdf:type schema:PropertyValue
    152 Nea374daa14c84e1ca03e4a2833af0645 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Plant Shoots
    154 rdf:type schema:DefinedTerm
    155 Ned157ffab3dd4a11abae0e3bf33f44f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Phloroglucinol
    157 rdf:type schema:DefinedTerm
    158 Nfc01aac26d0c4e67adb1e11d6570f9d1 schema:name pubmed_id
    159 schema:value 31796784
    160 rdf:type schema:PropertyValue
    161 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Information and Computing Sciences
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Artificial Intelligence and Image Processing
    166 rdf:type schema:DefinedTerm
    167 sg:journal.1045337 schema:issn 2045-2322
    168 schema:name Scientific Reports
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.010152317512.72 schema:affiliation grid-institutes:grid.46072.37
    172 schema:familyName Hesami
    173 schema:givenName Mohsen
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152317512.72
    175 rdf:type schema:Person
    176 sg:person.01126177703.58 schema:affiliation grid-institutes:grid.412502.0
    177 schema:familyName Tohidfar
    178 schema:givenName Masoud
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58
    180 rdf:type schema:Person
    181 sg:person.01153604677.50 schema:affiliation grid-institutes:grid.46072.37
    182 schema:familyName Naderi
    183 schema:givenName Roohangiz
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153604677.50
    185 rdf:type schema:Person
    186 sg:pub.10.1007/bf00034487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019902849
    187 https://doi.org/10.1007/bf00034487
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf00272106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039095051
    190 https://doi.org/10.1007/bf00272106
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10725-010-9555-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040567296
    193 https://doi.org/10.1007/s10725-010-9555-9
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s11240-011-9980-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034284606
    196 https://doi.org/10.1007/s11240-011-9980-0
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s11627-013-9491-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019713927
    199 https://doi.org/10.1007/s11627-013-9491-2
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s11676-018-0647-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103399790
    202 https://doi.org/10.1007/s11676-018-0647-0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s11738-015-1773-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030342751
    205 https://doi.org/10.1007/s11738-015-1773-3
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s12298-011-0074-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024704506
    208 https://doi.org/10.1007/s12298-011-0074-6
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s12665-015-4047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038107522
    211 https://doi.org/10.1007/s12665-015-4047-x
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s12892-018-0024-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105137322
    214 https://doi.org/10.1007/s12892-018-0024-0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s13580-017-0070-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084037208
    217 https://doi.org/10.1007/s13580-017-0070-z
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s40415-015-0143-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034002623
    220 https://doi.org/10.1007/s40415-015-0143-0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1016/j.jgeb.2017.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092827065
    223 https://doi.org/10.1016/j.jgeb.2017.11.001
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1006050122173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016316309
    226 https://doi.org/10.1023/a:1006050122173
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1023/a:1006329510280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014821690
    229 https://doi.org/10.1023/a:1006329510280
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1023/a:1006419805980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003204763
    232 https://doi.org/10.1023/a:1006419805980
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s41598-018-27858-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105156445
    235 https://doi.org/10.1038/s41598-018-27858-4
    236 rdf:type schema:CreativeWork
    237 grid-institutes:grid.412502.0 schema:alternateName Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
    238 schema:name Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
    239 rdf:type schema:Organization
    240 grid-institutes:grid.46072.37 schema:alternateName Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
    241 schema:name Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...