Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-17

AUTHORS

Sheng Gao, John Gaskins, Xixiao Hu, Kathleen Tomko, Patrick Hopkins, S. Joseph Poon

ABSTRACT

Thermoelectric (TE) materials research plays a vital role in heat-to-electrical energy conversion and refrigeration applications. Bismuth-antimony (Bi-Sb) alloy is a promising material for thermoelectric cooling. Herein, a high figure of merit, ZT, near 0.6 at cryogenic temperatures (100–150 K) has been achieved in melt-spun n-type Bi85Sb15 bulk samples consisting of micron-size grains. The achieved ZT is nearly 50% higher than polycrystalline averaged single crystal ZT of ~0.4, and it is also significantly higher than ZT of less than ~0.3 measured below 150 K in Bi-Te alloys commonly used for cryogenic cooling applications. The improved thermoelectric properties can be attributed to the fine-grained microstructure achieved from rapid solidification, which not only significantly reduced the thermal conductivity but also mitigated a segregation effect. A record low thermal conductivity of ~1.5 W m−1 K−1 near 100 K was measured using the hot disk method. The thermoelectric properties for this intriguing semimetal-semiconductor alloy system were analyzed within a two-band effective mass model. The study revealed a gradual narrowing of the band gap at increasing temperature in Bi-Sb alloy for the first time. Magneto-thermoelectric effects of this Bi-Sb alloy further improved the TE properties, leading to ZT of about 0.7. The magneto-TE effect was further demonstrated in a combined NdFeB/BiSb/NdFeB system. The compactness of the BiSb-magnet system with high ZT enables the utilization of magneto-TE effect in thermoelectric cooling applications. More... »

PAGES

14892

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-50325-7

DOI

http://dx.doi.org/10.1038/s41598-019-50325-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121884228

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31624277


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Sheng", 
        "id": "sg:person.010776007340.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776007340.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaskins", 
        "givenName": "John", 
        "id": "sg:person.013352752223.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352752223.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xixiao", 
        "id": "sg:person.011363121260.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363121260.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomko", 
        "givenName": "Kathleen", 
        "id": "sg:person.016070334367.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016070334367.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hopkins", 
        "givenName": "Patrick", 
        "id": "sg:person.012414150754.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012414150754.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. Joseph", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-010-1450-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038323848", 
          "https://doi.org/10.1007/s11664-010-1450-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-016-4810-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020653775", 
          "https://doi.org/10.1007/s11664-016-4810-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390050947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036754620", 
          "https://doi.org/10.1007/s003390050947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-012-1914-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035544937", 
          "https://doi.org/10.1007/s11664-012-1914-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-6895-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000637816", 
          "https://doi.org/10.1007/s10853-012-6895-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-4111-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032865936", 
          "https://doi.org/10.1007/978-3-7091-4111-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022752498", 
          "https://doi.org/10.1038/nature11439"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-10-17", 
    "datePublishedReg": "2019-10-17", 
    "description": "Thermoelectric (TE) materials research plays a vital role in heat-to-electrical energy conversion and refrigeration applications. Bismuth-antimony (Bi-Sb) alloy is a promising material for thermoelectric cooling. Herein, a high figure of merit, ZT, near 0.6 at cryogenic temperatures (100\u2013150\u2009K) has been achieved in melt-spun n-type Bi85Sb15 bulk samples consisting of micron-size grains. The achieved ZT is nearly 50% higher than polycrystalline averaged single crystal ZT of ~0.4, and it is also significantly higher than ZT of less than ~0.3 measured below 150\u2009K in Bi-Te alloys commonly used for cryogenic cooling applications. The improved thermoelectric properties can be attributed to the fine-grained microstructure achieved from rapid solidification, which not only significantly reduced the thermal conductivity but also mitigated a segregation effect. A record low thermal conductivity of ~1.5\u2009W\u2009m\u22121 K\u22121 near 100\u2009K was measured using the hot disk method. The thermoelectric properties for this intriguing semimetal-semiconductor alloy system were analyzed within a two-band effective mass model. The study revealed a gradual narrowing of the band gap at increasing temperature in Bi-Sb alloy for the first time. Magneto-thermoelectric effects of this Bi-Sb alloy further improved the TE properties, leading to ZT of about 0.7. The magneto-TE effect was further demonstrated in a combined NdFeB/BiSb/NdFeB system. The compactness of the BiSb-magnet system with high ZT enables the utilization of magneto-TE effect in thermoelectric cooling applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-019-50325-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "Bi-Sb alloys", 
      "cooling applications", 
      "thermal conductivity", 
      "record low thermal conductivity", 
      "thermoelectric properties", 
      "cryogenic temperatures", 
      "cryogenic cooling applications", 
      "thermoelectric cooling applications", 
      "hot disk method", 
      "low thermal conductivity", 
      "electrical energy conversion", 
      "thermoelectric materials research", 
      "improved thermoelectric properties", 
      "two-band effective mass model", 
      "micron-size grains", 
      "magneto-thermoelectric effects", 
      "thermoelectric cooling", 
      "enhanced figure", 
      "rapid solidification", 
      "high ZT", 
      "bismuth-antimony alloys", 
      "TE properties", 
      "refrigeration applications", 
      "promising material", 
      "alloy", 
      "energy conversion", 
      "alloy system", 
      "NdFeB system", 
      "Bi-Te", 
      "ZT", 
      "materials research", 
      "high figure", 
      "segregation effects", 
      "band gap", 
      "bulk samples", 
      "conductivity", 
      "temperature", 
      "properties", 
      "microstructure", 
      "solidification", 
      "applications", 
      "disc method", 
      "mass model", 
      "merits", 
      "heat", 
      "polycrystalline", 
      "cooling", 
      "effective mass model", 
      "system", 
      "materials", 
      "grains", 
      "fines", 
      "compactness", 
      "first time", 
      "vital role", 
      "effect", 
      "Herein", 
      "conversion", 
      "figures", 
      "method", 
      "utilization", 
      "model", 
      "gap", 
      "time", 
      "samples", 
      "gradual narrowing", 
      "research", 
      "study", 
      "narrowing", 
      "role"
    ], 
    "name": "Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures", 
    "pagination": "14892", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121884228"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-50325-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31624277"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-50325-7", 
      "https://app.dimensions.ai/details/publication/pub.1121884228"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_814.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-019-50325-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50325-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50325-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50325-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50325-7'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      102 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-50325-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf7051d69f6ff4f63aba96e8957fdf5f1
4 schema:citation sg:pub.10.1007/978-3-7091-4111-3
5 sg:pub.10.1007/s003390050947
6 sg:pub.10.1007/s10853-012-6895-z
7 sg:pub.10.1007/s11664-010-1450-7
8 sg:pub.10.1007/s11664-012-1914-z
9 sg:pub.10.1007/s11664-016-4810-0
10 sg:pub.10.1038/nature11439
11 schema:datePublished 2019-10-17
12 schema:datePublishedReg 2019-10-17
13 schema:description Thermoelectric (TE) materials research plays a vital role in heat-to-electrical energy conversion and refrigeration applications. Bismuth-antimony (Bi-Sb) alloy is a promising material for thermoelectric cooling. Herein, a high figure of merit, ZT, near 0.6 at cryogenic temperatures (100–150 K) has been achieved in melt-spun n-type Bi85Sb15 bulk samples consisting of micron-size grains. The achieved ZT is nearly 50% higher than polycrystalline averaged single crystal ZT of ~0.4, and it is also significantly higher than ZT of less than ~0.3 measured below 150 K in Bi-Te alloys commonly used for cryogenic cooling applications. The improved thermoelectric properties can be attributed to the fine-grained microstructure achieved from rapid solidification, which not only significantly reduced the thermal conductivity but also mitigated a segregation effect. A record low thermal conductivity of ~1.5 W m−1 K−1 near 100 K was measured using the hot disk method. The thermoelectric properties for this intriguing semimetal-semiconductor alloy system were analyzed within a two-band effective mass model. The study revealed a gradual narrowing of the band gap at increasing temperature in Bi-Sb alloy for the first time. Magneto-thermoelectric effects of this Bi-Sb alloy further improved the TE properties, leading to ZT of about 0.7. The magneto-TE effect was further demonstrated in a combined NdFeB/BiSb/NdFeB system. The compactness of the BiSb-magnet system with high ZT enables the utilization of magneto-TE effect in thermoelectric cooling applications.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N11f17b5e3b51479ba2b72a28171f0337
17 Nb124d72d58bd4f8bbb54a400f567b09c
18 sg:journal.1045337
19 schema:keywords Bi-Sb alloys
20 Bi-Te
21 Herein
22 NdFeB system
23 TE properties
24 ZT
25 alloy
26 alloy system
27 applications
28 band gap
29 bismuth-antimony alloys
30 bulk samples
31 compactness
32 conductivity
33 conversion
34 cooling
35 cooling applications
36 cryogenic cooling applications
37 cryogenic temperatures
38 disc method
39 effect
40 effective mass model
41 electrical energy conversion
42 energy conversion
43 enhanced figure
44 figures
45 fines
46 first time
47 gap
48 gradual narrowing
49 grains
50 heat
51 high ZT
52 high figure
53 hot disk method
54 improved thermoelectric properties
55 low thermal conductivity
56 magneto-thermoelectric effects
57 mass model
58 materials
59 materials research
60 merits
61 method
62 micron-size grains
63 microstructure
64 model
65 narrowing
66 polycrystalline
67 promising material
68 properties
69 rapid solidification
70 record low thermal conductivity
71 refrigeration applications
72 research
73 role
74 samples
75 segregation effects
76 solidification
77 study
78 system
79 temperature
80 thermal conductivity
81 thermoelectric cooling
82 thermoelectric cooling applications
83 thermoelectric materials research
84 thermoelectric properties
85 time
86 two-band effective mass model
87 utilization
88 vital role
89 schema:name Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures
90 schema:pagination 14892
91 schema:productId N02bb818ce29b4554886e4dfaa765bbec
92 N9efc991ed38840c5bb53368fd86f4058
93 Nfd28b9a6dfd9464ab5f5bf45ebd96cdf
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121884228
95 https://doi.org/10.1038/s41598-019-50325-7
96 schema:sdDatePublished 2022-10-01T06:46
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nee3a747dd15e4254b63be8867c5a77dc
99 schema:url https://doi.org/10.1038/s41598-019-50325-7
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N02bb818ce29b4554886e4dfaa765bbec schema:name dimensions_id
104 schema:value pub.1121884228
105 rdf:type schema:PropertyValue
106 N11f17b5e3b51479ba2b72a28171f0337 schema:volumeNumber 9
107 rdf:type schema:PublicationVolume
108 N191b2fd824544e85806019f4f173cfb4 rdf:first sg:person.013352752223.94
109 rdf:rest Nb71dead9941547fcaeffd842dd589638
110 N2b958fcf363e43afa0e47a68ab54cff5 rdf:first sg:person.010252015157.28
111 rdf:rest rdf:nil
112 N902170f47e1f4575aecae48f5038df7f rdf:first sg:person.016070334367.85
113 rdf:rest Nb66dd3ef5c6047dab7855eb03984b5b7
114 N9efc991ed38840c5bb53368fd86f4058 schema:name doi
115 schema:value 10.1038/s41598-019-50325-7
116 rdf:type schema:PropertyValue
117 Nb124d72d58bd4f8bbb54a400f567b09c schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Nb66dd3ef5c6047dab7855eb03984b5b7 rdf:first sg:person.012414150754.12
120 rdf:rest N2b958fcf363e43afa0e47a68ab54cff5
121 Nb71dead9941547fcaeffd842dd589638 rdf:first sg:person.011363121260.16
122 rdf:rest N902170f47e1f4575aecae48f5038df7f
123 Nee3a747dd15e4254b63be8867c5a77dc schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nf7051d69f6ff4f63aba96e8957fdf5f1 rdf:first sg:person.010776007340.99
126 rdf:rest N191b2fd824544e85806019f4f173cfb4
127 Nfd28b9a6dfd9464ab5f5bf45ebd96cdf schema:name pubmed_id
128 schema:value 31624277
129 rdf:type schema:PropertyValue
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
134 schema:name Materials Engineering
135 rdf:type schema:DefinedTerm
136 sg:journal.1045337 schema:issn 2045-2322
137 schema:name Scientific Reports
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
141 schema:familyName Poon
142 schema:givenName S. Joseph
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
144 rdf:type schema:Person
145 sg:person.010776007340.99 schema:affiliation grid-institutes:grid.27755.32
146 schema:familyName Gao
147 schema:givenName Sheng
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776007340.99
149 rdf:type schema:Person
150 sg:person.011363121260.16 schema:affiliation grid-institutes:grid.27755.32
151 schema:familyName Hu
152 schema:givenName Xixiao
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363121260.16
154 rdf:type schema:Person
155 sg:person.012414150754.12 schema:affiliation grid-institutes:grid.27755.32
156 schema:familyName Hopkins
157 schema:givenName Patrick
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012414150754.12
159 rdf:type schema:Person
160 sg:person.013352752223.94 schema:affiliation grid-institutes:grid.27755.32
161 schema:familyName Gaskins
162 schema:givenName John
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352752223.94
164 rdf:type schema:Person
165 sg:person.016070334367.85 schema:affiliation grid-institutes:grid.27755.32
166 schema:familyName Tomko
167 schema:givenName Kathleen
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016070334367.85
169 rdf:type schema:Person
170 sg:pub.10.1007/978-3-7091-4111-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032865936
171 https://doi.org/10.1007/978-3-7091-4111-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s003390050947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036754620
174 https://doi.org/10.1007/s003390050947
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s10853-012-6895-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000637816
177 https://doi.org/10.1007/s10853-012-6895-z
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s11664-010-1450-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038323848
180 https://doi.org/10.1007/s11664-010-1450-7
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s11664-012-1914-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035544937
183 https://doi.org/10.1007/s11664-012-1914-z
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s11664-016-4810-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020653775
186 https://doi.org/10.1007/s11664-016-4810-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature11439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022752498
189 https://doi.org/10.1038/nature11439
190 rdf:type schema:CreativeWork
191 grid-institutes:grid.27755.32 schema:alternateName Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA
192 Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA
193 schema:name Department of Mechanical and Aerospace Engineering, University of Virginia, 22904-4259, Charlottesville, VA, USA
194 Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...