High Entropy Alloys Mined From Binary Phase Diagrams View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-29

AUTHORS

Jie Qi, Andrew M. Cheung, S. Joseph Poon

ABSTRACT

High entropy alloys (HEA) are a new type of high-performance structural material. Their vast degrees of compositional freedom provide for extensive opportunities to design alloys with tailored properties. However, compositional complexities present challenges for alloy design. Current approaches have shown limited reliability in accounting for the compositional regions of single solid solution and composite phases. For the first time, a phenomenological method analysing binary phase diagrams to predict HEA phases is presented. The hypothesis is that the HEA structural stability is encoded within the phase diagrams. Accordingly, we introduce several phase-diagram inspired parameters and employ machine learning (ML) to classify 600+ reported HEAs based on these parameters. Compared to other large database statistical prediction models, this model gives more detailed and accurate phase predictions. Both the overall HEA prediction and specifically single-phase HEA prediction rate are above 80%. To validate our method, we demonstrated its capability in predicting HEA solid solution phases with or without intermetallics in 42 randomly selected complex compositions, with a success rate of 81%. The presented search approach with high predictive capability can be exploited to interact with and complement other computation-intense methods such as CALPHAD in providing an accelerated and precise HEA design. More... »

PAGES

15501

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-50015-4

DOI

http://dx.doi.org/10.1038/s41598-019-50015-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122174259

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31664046


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Jie", 
        "id": "sg:person.07715562503.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715562503.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Andrew M.", 
        "id": "sg:person.010077464334.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077464334.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. Joseph", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.2018.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107135682", 
          "https://doi.org/10.1557/jmr.2018.323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11669-017-0565-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085985326", 
          "https://doi.org/10.1007/s11669-017-0565-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2018.273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106218020", 
          "https://doi.org/10.1557/jmr.2018.273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-017-2527-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091389116", 
          "https://doi.org/10.1007/s11837-017-2527-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-013-0761-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024423774", 
          "https://doi.org/10.1007/s11837-013-0761-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-017-0049-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092621908", 
          "https://doi.org/10.1038/s41524-017-0049-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06757-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107829083", 
          "https://doi.org/10.1038/s41467-018-06757-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2017.366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092205766", 
          "https://doi.org/10.1557/jmr.2017.366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2018.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104465824", 
          "https://doi.org/10.1557/jmr.2018.153"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-10-29", 
    "datePublishedReg": "2019-10-29", 
    "description": "High entropy alloys (HEA) are a new type of high-performance structural material. Their vast degrees of compositional freedom provide for extensive opportunities to design alloys with tailored properties. However, compositional complexities present challenges for alloy design. Current approaches have shown limited reliability in accounting for the compositional regions of single solid solution and composite phases. For the first time, a phenomenological method analysing binary phase diagrams to predict HEA phases is presented. The hypothesis is that the HEA structural stability is encoded within the phase diagrams. Accordingly, we introduce several phase-diagram inspired parameters and employ machine learning (ML) to classify 600+ reported HEAs based on these parameters. Compared to other large database statistical prediction models, this model gives more detailed and accurate phase predictions. Both the overall HEA prediction and specifically single-phase HEA prediction rate are above 80%. To validate our method, we demonstrated its capability in predicting HEA solid solution phases with or without intermetallics in 42 randomly selected complex compositions, with a success rate of 81%. The presented search approach with high predictive capability can be exploited to interact with and complement other computation-intense methods such as CALPHAD in providing an accelerated and precise HEA design.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-019-50015-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "high-entropy alloys", 
      "entropy alloys", 
      "high-performance structural materials", 
      "solid solution phase", 
      "single solid solution", 
      "HEA design", 
      "alloy design", 
      "structural materials", 
      "HEA phases", 
      "binary phase diagram", 
      "composite phases", 
      "alloy", 
      "solid solution", 
      "phase diagram", 
      "phase prediction", 
      "structural stability", 
      "predictive capability", 
      "compositional region", 
      "solution phase", 
      "new type", 
      "prediction model", 
      "complex composition", 
      "high predictive capability", 
      "design", 
      "capability", 
      "intermetallics", 
      "phase", 
      "CALPHAD", 
      "parameters", 
      "statistical prediction model", 
      "diagram", 
      "prediction", 
      "method", 
      "materials", 
      "limited reliability", 
      "stability", 
      "properties", 
      "first time", 
      "reliability", 
      "model", 
      "present challenges", 
      "vast degree", 
      "solution", 
      "machine learning", 
      "extensive opportunities", 
      "approach", 
      "prediction rate", 
      "rate", 
      "composition", 
      "current approaches", 
      "search approach", 
      "time", 
      "provide", 
      "challenges", 
      "types", 
      "degree", 
      "region", 
      "opportunities", 
      "success rate", 
      "learning", 
      "phenomenological method", 
      "hypothesis"
    ], 
    "name": "High Entropy Alloys Mined From Binary Phase Diagrams", 
    "pagination": "15501", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122174259"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-50015-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31664046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-50015-4", 
      "https://app.dimensions.ai/details/publication/pub.1122174259"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_818.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-019-50015-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50015-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50015-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50015-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-50015-4'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      97 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-50015-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N050e2bf059f24a43a0c92b3190ce69f0
4 schema:citation sg:pub.10.1007/s11669-017-0565-4
5 sg:pub.10.1007/s11837-013-0761-6
6 sg:pub.10.1007/s11837-017-2527-z
7 sg:pub.10.1023/a:1010933404324
8 sg:pub.10.1038/s41467-018-06757-2
9 sg:pub.10.1038/s41524-017-0049-4
10 sg:pub.10.1557/jmr.2017.366
11 sg:pub.10.1557/jmr.2018.153
12 sg:pub.10.1557/jmr.2018.273
13 sg:pub.10.1557/jmr.2018.323
14 schema:datePublished 2019-10-29
15 schema:datePublishedReg 2019-10-29
16 schema:description High entropy alloys (HEA) are a new type of high-performance structural material. Their vast degrees of compositional freedom provide for extensive opportunities to design alloys with tailored properties. However, compositional complexities present challenges for alloy design. Current approaches have shown limited reliability in accounting for the compositional regions of single solid solution and composite phases. For the first time, a phenomenological method analysing binary phase diagrams to predict HEA phases is presented. The hypothesis is that the HEA structural stability is encoded within the phase diagrams. Accordingly, we introduce several phase-diagram inspired parameters and employ machine learning (ML) to classify 600+ reported HEAs based on these parameters. Compared to other large database statistical prediction models, this model gives more detailed and accurate phase predictions. Both the overall HEA prediction and specifically single-phase HEA prediction rate are above 80%. To validate our method, we demonstrated its capability in predicting HEA solid solution phases with or without intermetallics in 42 randomly selected complex compositions, with a success rate of 81%. The presented search approach with high predictive capability can be exploited to interact with and complement other computation-intense methods such as CALPHAD in providing an accelerated and precise HEA design.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N8c6c4f668e6c418d973e906cccbc69e8
20 Nb775a64138c541369fd488d03a3a4ecc
21 sg:journal.1045337
22 schema:keywords CALPHAD
23 HEA design
24 HEA phases
25 alloy
26 alloy design
27 approach
28 binary phase diagram
29 capability
30 challenges
31 complex composition
32 composite phases
33 composition
34 compositional region
35 current approaches
36 degree
37 design
38 diagram
39 entropy alloys
40 extensive opportunities
41 first time
42 high predictive capability
43 high-entropy alloys
44 high-performance structural materials
45 hypothesis
46 intermetallics
47 learning
48 limited reliability
49 machine learning
50 materials
51 method
52 model
53 new type
54 opportunities
55 parameters
56 phase
57 phase diagram
58 phase prediction
59 phenomenological method
60 prediction
61 prediction model
62 prediction rate
63 predictive capability
64 present challenges
65 properties
66 provide
67 rate
68 region
69 reliability
70 search approach
71 single solid solution
72 solid solution
73 solid solution phase
74 solution
75 solution phase
76 stability
77 statistical prediction model
78 structural materials
79 structural stability
80 success rate
81 time
82 types
83 vast degree
84 schema:name High Entropy Alloys Mined From Binary Phase Diagrams
85 schema:pagination 15501
86 schema:productId N306ca4b215e846fa95ad3a0021ab4fd7
87 N7cb9488c8c5f4a60894f1a303d3a5601
88 N99f34256df034693b63fa3bb0a0504b2
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122174259
90 https://doi.org/10.1038/s41598-019-50015-4
91 schema:sdDatePublished 2022-10-01T06:46
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N6d0ed7dadbd24b2780e783afc6098b51
94 schema:url https://doi.org/10.1038/s41598-019-50015-4
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N050e2bf059f24a43a0c92b3190ce69f0 rdf:first sg:person.07715562503.25
99 rdf:rest Nc353abb224d14717b36793048567dd71
100 N306ca4b215e846fa95ad3a0021ab4fd7 schema:name dimensions_id
101 schema:value pub.1122174259
102 rdf:type schema:PropertyValue
103 N6d0ed7dadbd24b2780e783afc6098b51 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N7cb9488c8c5f4a60894f1a303d3a5601 schema:name doi
106 schema:value 10.1038/s41598-019-50015-4
107 rdf:type schema:PropertyValue
108 N800acf25be794a018be5331a2d60a761 rdf:first sg:person.010252015157.28
109 rdf:rest rdf:nil
110 N8c6c4f668e6c418d973e906cccbc69e8 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N99f34256df034693b63fa3bb0a0504b2 schema:name pubmed_id
113 schema:value 31664046
114 rdf:type schema:PropertyValue
115 Nb775a64138c541369fd488d03a3a4ecc schema:volumeNumber 9
116 rdf:type schema:PublicationVolume
117 Nc353abb224d14717b36793048567dd71 rdf:first sg:person.010077464334.56
118 rdf:rest N800acf25be794a018be5331a2d60a761
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.010077464334.56 schema:affiliation grid-institutes:grid.27755.32
130 schema:familyName Cheung
131 schema:givenName Andrew M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077464334.56
133 rdf:type schema:Person
134 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
135 schema:familyName Poon
136 schema:givenName S. Joseph
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
138 rdf:type schema:Person
139 sg:person.07715562503.25 schema:affiliation grid-institutes:grid.27755.32
140 schema:familyName Qi
141 schema:givenName Jie
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715562503.25
143 rdf:type schema:Person
144 sg:pub.10.1007/s11669-017-0565-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085985326
145 https://doi.org/10.1007/s11669-017-0565-4
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11837-013-0761-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024423774
148 https://doi.org/10.1007/s11837-013-0761-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11837-017-2527-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091389116
151 https://doi.org/10.1007/s11837-017-2527-z
152 rdf:type schema:CreativeWork
153 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
154 https://doi.org/10.1023/a:1010933404324
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/s41467-018-06757-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107829083
157 https://doi.org/10.1038/s41467-018-06757-2
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/s41524-017-0049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092621908
160 https://doi.org/10.1038/s41524-017-0049-4
161 rdf:type schema:CreativeWork
162 sg:pub.10.1557/jmr.2017.366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092205766
163 https://doi.org/10.1557/jmr.2017.366
164 rdf:type schema:CreativeWork
165 sg:pub.10.1557/jmr.2018.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104465824
166 https://doi.org/10.1557/jmr.2018.153
167 rdf:type schema:CreativeWork
168 sg:pub.10.1557/jmr.2018.273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106218020
169 https://doi.org/10.1557/jmr.2018.273
170 rdf:type schema:CreativeWork
171 sg:pub.10.1557/jmr.2018.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107135682
172 https://doi.org/10.1557/jmr.2018.323
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.27755.32 schema:alternateName Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA
175 schema:name Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...