Absorption avoided resonance crossing of hybridization of silicon nanoparticles and gold nanoantennas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-08-13

AUTHORS

Jhen-Hong Yang, Min-Wen Yu, Kuo-Ping Chen

ABSTRACT

The near-field coupling between a high-refractive-index nanoparticle and gold nanoantennas is investigated theoretically. The absorption enhancement and also avoided resonance crossing in the absorption cross section spectra were observed with the hybridization system due to the coupling between the localized surface plasmon resonance of the gold nanoantennas and the magnetic dipole resonance of the silicon nanoparticle. By controlling the nanoparticle size or the separation distance, the near-field coupling can be tuned from the weak to the strong regime. More... »

PAGES

11778

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-48135-y

DOI

http://dx.doi.org/10.1038/s41598-019-48135-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1120280089

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31409844


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Photonic System, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Photonic System, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jhen-Hong", 
        "id": "sg:person.011723715415.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723715415.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Min-Wen", 
        "id": "sg:person.013064230313.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064230313.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Kuo-Ping", 
        "id": "sg:person.0737465714.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737465714.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep22136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022776876", 
          "https://doi.org/10.1038/srep22136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep32194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050892437", 
          "https://doi.org/10.1038/srep32194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033351502", 
          "https://doi.org/10.1038/nature07627"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-08-13", 
    "datePublishedReg": "2019-08-13", 
    "description": "The near-field coupling between a high-refractive-index nanoparticle and gold nanoantennas is investigated theoretically. The absorption enhancement and also avoided resonance crossing in the absorption cross section spectra were observed with the hybridization system due to the coupling between the localized surface plasmon resonance of the gold nanoantennas and the magnetic dipole resonance of the silicon nanoparticle. By controlling the nanoparticle size or the separation distance, the near-field coupling can be tuned from the weak to the strong regime.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-019-48135-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "near-field coupling", 
      "gold nanoantennas", 
      "silicon nanoparticles", 
      "resonance crossing", 
      "absorption cross-section spectra", 
      "magnetic dipole resonance", 
      "cross-section spectra", 
      "surface plasmon resonance", 
      "index nanoparticles", 
      "dipole resonance", 
      "nanoparticle size", 
      "absorption enhancement", 
      "strong regime", 
      "plasmon resonance", 
      "nanoantennas", 
      "nanoparticles", 
      "hybridization system", 
      "coupling", 
      "resonance", 
      "separation distance", 
      "crossing", 
      "spectra", 
      "absorption", 
      "regime", 
      "distance", 
      "enhancement", 
      "size", 
      "hybridization", 
      "system", 
      "section spectra"
    ], 
    "name": "Absorption avoided resonance crossing of hybridization of silicon nanoparticles and gold nanoantennas", 
    "pagination": "11778", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1120280089"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-48135-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31409844"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-48135-y", 
      "https://app.dimensions.ai/details/publication/pub.1120280089"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_801.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-019-48135-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-48135-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-48135-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-48135-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-48135-y'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      61 URIs      48 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-48135-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:10
4 anzsrc-for:1007
5 schema:author N0320085690f24207a2176de38e2c3be7
6 schema:citation sg:pub.10.1038/nature07627
7 sg:pub.10.1038/srep22136
8 sg:pub.10.1038/srep32194
9 schema:datePublished 2019-08-13
10 schema:datePublishedReg 2019-08-13
11 schema:description The near-field coupling between a high-refractive-index nanoparticle and gold nanoantennas is investigated theoretically. The absorption enhancement and also avoided resonance crossing in the absorption cross section spectra were observed with the hybridization system due to the coupling between the localized surface plasmon resonance of the gold nanoantennas and the magnetic dipole resonance of the silicon nanoparticle. By controlling the nanoparticle size or the separation distance, the near-field coupling can be tuned from the weak to the strong regime.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N7a9e2c8258b749b1a37e5e60a436d6e8
16 Ndc09ee8f36ff4c30ab2560d7d3541fdd
17 sg:journal.1045337
18 schema:keywords absorption
19 absorption cross-section spectra
20 absorption enhancement
21 coupling
22 cross-section spectra
23 crossing
24 dipole resonance
25 distance
26 enhancement
27 gold nanoantennas
28 hybridization
29 hybridization system
30 index nanoparticles
31 magnetic dipole resonance
32 nanoantennas
33 nanoparticle size
34 nanoparticles
35 near-field coupling
36 plasmon resonance
37 regime
38 resonance
39 resonance crossing
40 section spectra
41 separation distance
42 silicon nanoparticles
43 size
44 spectra
45 strong regime
46 surface plasmon resonance
47 system
48 schema:name Absorption avoided resonance crossing of hybridization of silicon nanoparticles and gold nanoantennas
49 schema:pagination 11778
50 schema:productId N5e7a995964244dd889f72f956296f8e8
51 N6b1faa5ccfc14791a5bf404e81a315d0
52 Nc6662412823f410081202bd5bfdc78ec
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120280089
54 https://doi.org/10.1038/s41598-019-48135-y
55 schema:sdDatePublished 2022-01-01T18:52
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N35499c59b69745f4a401547b279c13e2
58 schema:url https://doi.org/10.1038/s41598-019-48135-y
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0320085690f24207a2176de38e2c3be7 rdf:first sg:person.011723715415.27
63 rdf:rest N5444d5323fea4b6daa20342e6b51725d
64 N35499c59b69745f4a401547b279c13e2 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N5444d5323fea4b6daa20342e6b51725d rdf:first sg:person.013064230313.18
67 rdf:rest Na62d529281f64f91b441c4802c30a6f4
68 N5e7a995964244dd889f72f956296f8e8 schema:name dimensions_id
69 schema:value pub.1120280089
70 rdf:type schema:PropertyValue
71 N6b1faa5ccfc14791a5bf404e81a315d0 schema:name pubmed_id
72 schema:value 31409844
73 rdf:type schema:PropertyValue
74 N7a9e2c8258b749b1a37e5e60a436d6e8 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Na62d529281f64f91b441c4802c30a6f4 rdf:first sg:person.0737465714.88
77 rdf:rest rdf:nil
78 Nc6662412823f410081202bd5bfdc78ec schema:name doi
79 schema:value 10.1038/s41598-019-48135-y
80 rdf:type schema:PropertyValue
81 Ndc09ee8f36ff4c30ab2560d7d3541fdd schema:volumeNumber 9
82 rdf:type schema:PublicationVolume
83 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
84 schema:name Chemical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Chemistry (incl. Structural)
88 rdf:type schema:DefinedTerm
89 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
90 schema:name Technology
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
93 schema:name Nanotechnology
94 rdf:type schema:DefinedTerm
95 sg:journal.1045337 schema:issn 2045-2322
96 schema:name Scientific Reports
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.011723715415.27 schema:affiliation grid-institutes:grid.260539.b
100 schema:familyName Yang
101 schema:givenName Jhen-Hong
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723715415.27
103 rdf:type schema:Person
104 sg:person.013064230313.18 schema:affiliation grid-institutes:grid.260539.b
105 schema:familyName Yu
106 schema:givenName Min-Wen
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064230313.18
108 rdf:type schema:Person
109 sg:person.0737465714.88 schema:affiliation grid-institutes:grid.260539.b
110 schema:familyName Chen
111 schema:givenName Kuo-Ping
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737465714.88
113 rdf:type schema:Person
114 sg:pub.10.1038/nature07627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033351502
115 https://doi.org/10.1038/nature07627
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/srep22136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022776876
118 https://doi.org/10.1038/srep22136
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/srep32194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050892437
121 https://doi.org/10.1038/srep32194
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.260539.b schema:alternateName Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC
124 Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC
125 Institute of Photonic System, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC
126 schema:name Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC
127 Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC
128 Institute of Photonic System, College of Photonics, National Chiao Tung University, Tainan, Taiwan, ROC
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...