Robust Formation of Ultrasmall Room-Temperature Neél Skyrmions in Amorphous Ferrimagnets from Atomistic Simulations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-07-10

AUTHORS

Chung Ting Ma, Yunkun Xie, Howard Sheng, Avik W. Ghosh, S. Joseph Poon

ABSTRACT

Neél skyrmions originate from interfacial Dzyaloshinskii Moriya interaction (DMI). Recent studies have explored using thin-film ferromagnets and ferrimagnets to host Neél skyrmions for spintronic applications. However, it is unclear if ultrasmall (10 nm or less) skyrmions can ever be stabilized at room temperature for practical use in high density parallel racetrack memories. While thicker films can improve stability, DMI decays rapidly away from the interface. As such, spins far away from the interface would experience near-zero DMI, raising question on whether or not unrealistically large DMI is needed to stabilize skyrmions, and whether skyrmions will also collapse away from the interface. To address these questions, we have employed atomistic stochastic Landau-Lifshitz-Gilbert simulations to investigate skyrmions in amorphous ferrimagnetic GdCo. It is revealed that a significant reduction in DMI below that of Pt is sufficient to stabilize ultrasmall skyrmions even in films as thick as 15 nm. Moreover, skyrmions are found to retain a uniform columnar shape across the film thickness due to the long ferrimagnetic exchange length despite the decaying DMI. Our results show that increasing thickness and reducing DMI in GdCo can further reduce the size of skyrmions at room temperature, which is crucial to improve the density and energy efficiency in skyrmion based devices. More... »

PAGES

9964

References to SciGraph publications

  • 2016-02-29. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets in NATURE MATERIALS
  • 2013-12-04. Topological properties and dynamics of magnetic skyrmions in NATURE NANOTECHNOLOGY
  • 2018-03-13. Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications in SCIENTIFIC REPORTS
  • 2017-09-25. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets in NATURE MATERIALS
  • 2012-01. Skyrmion flow near room temperature in an ultralow current density in NATURE COMMUNICATIONS
  • 2014-10-29. A strategy for the design of skyrmion racetrack memories in SCIENTIFIC REPORTS
  • 2010-12-05. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe in NATURE MATERIALS
  • 2015-08-03. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films in NATURE PHYSICS
  • 2015-02-02. Dynamics and inertia of skyrmionic spin structures in NATURE PHYSICS
  • 2010-06. Real-space observation of a two-dimensional skyrmion crystal in NATURE
  • 2013-10-27. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures in NATURE NANOTECHNOLOGY
  • 2015-03-24. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions in SCIENTIFIC REPORTS
  • 2011-03-30. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins in NATURE
  • 2016-04-21. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation in SCIENTIFIC REPORTS
  • 2016-01-25. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures in NATURE NANOTECHNOLOGY
  • 2018-09-17. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet in NATURE NANOTECHNOLOGY
  • 2014-02-16. Three rules of design in NATURE MATERIALS
  • 2006-01. Atomic packing and short-to-medium-range order in metallic glasses in NATURE
  • 2012-01. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet in NATURE COMMUNICATIONS
  • 2013-10-24. Tailoring the chirality of magnetic domain walls by interface engineering in NATURE COMMUNICATIONS
  • 2013-03-05. Skyrmions on the track in NATURE NANOTECHNOLOGY
  • 2016-12-26. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy in NATURE PHYSICS
  • 2018-03-06. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films in NATURE COMMUNICATIONS
  • 2014-02-16. Engineered materials for all-optical helicity-dependent magnetic switching in NATURE MATERIALS
  • 2017-07-17. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers in NATURE MATERIALS
  • 2016-09-19. Direct observation of the skyrmion Hall effect in NATURE PHYSICS
  • 2006-08. Spontaneous skyrmion ground states in magnetic metals in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-46458-4

    DOI

    http://dx.doi.org/10.1038/s41598-019-46458-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1117869772

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31292514


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA", 
              "id": "http://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Chung Ting", 
            "id": "sg:person.011300717101.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300717101.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
              "id": "http://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Yunkun", 
            "id": "sg:person.015156245224.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156245224.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics and Astronomy, George Mason University, 22030, Fairfax, Virginia, USA", 
              "id": "http://www.grid.ac/institutes/grid.22448.38", 
              "name": [
                "Department of Physics and Astronomy, George Mason University, 22030, Fairfax, Virginia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sheng", 
            "givenName": "Howard", 
            "id": "sg:person.016600150604.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600150604.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
              "id": "http://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA", 
                "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghosh", 
            "givenName": "Avik W.", 
            "id": "sg:person.01304445360.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304445360.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA", 
              "id": "http://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poon", 
            "givenName": "S. Joseph", 
            "id": "sg:person.010252015157.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys3418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011251441", 
              "https://doi.org/10.1038/nphys3418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005952070", 
              "https://doi.org/10.1038/nphys3883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012698622", 
              "https://doi.org/10.1038/srep09400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080992", 
              "https://doi.org/10.1038/nature09124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019106955", 
              "https://doi.org/10.1038/nature04421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035968585", 
              "https://doi.org/10.1038/nnano.2015.315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000753350", 
              "https://doi.org/10.1038/nmat2916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030152479", 
              "https://doi.org/10.1038/nphys4000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0255-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106931796", 
              "https://doi.org/10.1038/s41565-018-0255-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038723767", 
              "https://doi.org/10.1038/nmat3886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017044158", 
              "https://doi.org/10.1038/ncomms3671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090738878", 
              "https://doi.org/10.1038/nmat4934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-22242-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101459037", 
              "https://doi.org/10.1038/s41598-018-22242-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034404991", 
              "https://doi.org/10.1038/nphys3234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020854198", 
              "https://doi.org/10.1038/nature09901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052510644", 
              "https://doi.org/10.1038/nnano.2013.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009287387", 
              "https://doi.org/10.1038/nmat4593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022657870", 
              "https://doi.org/10.1038/nnano.2013.210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep24795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025989791", 
              "https://doi.org/10.1038/srep24795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep06784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003042361", 
              "https://doi.org/10.1038/srep06784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035520234", 
              "https://doi.org/10.1038/nmat3864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026224499", 
              "https://doi.org/10.1038/ncomms1666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026381550", 
              "https://doi.org/10.1038/nature05056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091911006", 
              "https://doi.org/10.1038/nmat4990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030997696", 
              "https://doi.org/10.1038/ncomms1990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006853479", 
              "https://doi.org/10.1038/nnano.2013.29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03378-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101269741", 
              "https://doi.org/10.1038/s41467-018-03378-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-07-10", 
        "datePublishedReg": "2019-07-10", 
        "description": "Ne\u00e9l skyrmions originate from interfacial Dzyaloshinskii Moriya interaction (DMI). Recent studies have explored using thin-film ferromagnets and ferrimagnets to host Ne\u00e9l skyrmions for spintronic applications. However, it is unclear if ultrasmall (10\u2009nm or less) skyrmions can ever be stabilized at room temperature for practical use in high density parallel racetrack memories. While thicker films can improve stability, DMI decays rapidly away from the interface. As such, spins far away from the interface would experience near-zero DMI, raising question on whether or not unrealistically large DMI is needed to stabilize skyrmions, and whether skyrmions will also collapse away from the interface. To address these questions, we have employed atomistic stochastic Landau-Lifshitz-Gilbert simulations to investigate skyrmions in amorphous ferrimagnetic GdCo. It is revealed that a significant reduction in DMI below that of Pt is sufficient to stabilize ultrasmall skyrmions even in films as thick as 15\u2009nm. Moreover, skyrmions are found to retain a uniform columnar shape across the film thickness due to the long ferrimagnetic exchange length\u00a0despite the decaying DMI. Our results show that increasing thickness and reducing DMI in GdCo can further reduce the size of skyrmions at room temperature, which is crucial to improve the density and energy efficiency in skyrmion based devices.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-46458-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4107986", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "Dzyaloshinskii-Moriya interaction", 
          "interfacial Dzyaloshinskii-Moriya interaction", 
          "room temperature", 
          "thin-film ferromagnets", 
          "large Dzyaloshinskii-Moriya interaction", 
          "thick films", 
          "film thickness", 
          "size of skyrmions", 
          "energy efficiency", 
          "racetrack memory", 
          "spintronic applications", 
          "exchange length", 
          "Gilbert simulations", 
          "atomistic simulations", 
          "stochastic Landau-Lifshitz", 
          "films", 
          "amorphous ferrimagnet", 
          "interface", 
          "Landau-Lifshitz", 
          "thickness", 
          "simulations", 
          "practical use", 
          "temperature", 
          "Moriya interaction", 
          "GdCo", 
          "columnar shape", 
          "skyrmions", 
          "robust formation", 
          "devices", 
          "efficiency", 
          "stability", 
          "density", 
          "applications", 
          "ferrimagnet", 
          "shape", 
          "Pt", 
          "size", 
          "ferromagnet", 
          "reduction", 
          "significant reduction", 
          "formation", 
          "results", 
          "length", 
          "use", 
          "spin", 
          "interaction", 
          "decay", 
          "study", 
          "memory", 
          "Recent studies", 
          "questions"
        ], 
        "name": "Robust Formation of Ultrasmall Room-Temperature Ne\u00e9l Skyrmions in Amorphous Ferrimagnets from Atomistic Simulations", 
        "pagination": "9964", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1117869772"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-46458-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31292514"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-46458-4", 
          "https://app.dimensions.ai/details/publication/pub.1117869772"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_802.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-46458-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-46458-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-46458-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-46458-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-46458-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    254 TRIPLES      21 PREDICATES      103 URIs      68 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-46458-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N9b07d682e150496dbe84bc0f395bc98d
    4 schema:citation sg:pub.10.1038/nature04421
    5 sg:pub.10.1038/nature05056
    6 sg:pub.10.1038/nature09124
    7 sg:pub.10.1038/nature09901
    8 sg:pub.10.1038/ncomms1666
    9 sg:pub.10.1038/ncomms1990
    10 sg:pub.10.1038/ncomms3671
    11 sg:pub.10.1038/nmat2916
    12 sg:pub.10.1038/nmat3864
    13 sg:pub.10.1038/nmat3886
    14 sg:pub.10.1038/nmat4593
    15 sg:pub.10.1038/nmat4934
    16 sg:pub.10.1038/nmat4990
    17 sg:pub.10.1038/nnano.2013.210
    18 sg:pub.10.1038/nnano.2013.243
    19 sg:pub.10.1038/nnano.2013.29
    20 sg:pub.10.1038/nnano.2015.315
    21 sg:pub.10.1038/nphys3234
    22 sg:pub.10.1038/nphys3418
    23 sg:pub.10.1038/nphys3883
    24 sg:pub.10.1038/nphys4000
    25 sg:pub.10.1038/s41467-018-03378-7
    26 sg:pub.10.1038/s41565-018-0255-3
    27 sg:pub.10.1038/s41598-018-22242-8
    28 sg:pub.10.1038/srep06784
    29 sg:pub.10.1038/srep09400
    30 sg:pub.10.1038/srep24795
    31 schema:datePublished 2019-07-10
    32 schema:datePublishedReg 2019-07-10
    33 schema:description Neél skyrmions originate from interfacial Dzyaloshinskii Moriya interaction (DMI). Recent studies have explored using thin-film ferromagnets and ferrimagnets to host Neél skyrmions for spintronic applications. However, it is unclear if ultrasmall (10 nm or less) skyrmions can ever be stabilized at room temperature for practical use in high density parallel racetrack memories. While thicker films can improve stability, DMI decays rapidly away from the interface. As such, spins far away from the interface would experience near-zero DMI, raising question on whether or not unrealistically large DMI is needed to stabilize skyrmions, and whether skyrmions will also collapse away from the interface. To address these questions, we have employed atomistic stochastic Landau-Lifshitz-Gilbert simulations to investigate skyrmions in amorphous ferrimagnetic GdCo. It is revealed that a significant reduction in DMI below that of Pt is sufficient to stabilize ultrasmall skyrmions even in films as thick as 15 nm. Moreover, skyrmions are found to retain a uniform columnar shape across the film thickness due to the long ferrimagnetic exchange length despite the decaying DMI. Our results show that increasing thickness and reducing DMI in GdCo can further reduce the size of skyrmions at room temperature, which is crucial to improve the density and energy efficiency in skyrmion based devices.
    34 schema:genre article
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N06fa87d7ad174486b15bdc203d8aac76
    37 N144dc67131b44b8a99f39959a6ee28cf
    38 sg:journal.1045337
    39 schema:keywords Dzyaloshinskii-Moriya interaction
    40 GdCo
    41 Gilbert simulations
    42 Landau-Lifshitz
    43 Moriya interaction
    44 Pt
    45 Recent studies
    46 amorphous ferrimagnet
    47 applications
    48 atomistic simulations
    49 columnar shape
    50 decay
    51 density
    52 devices
    53 efficiency
    54 energy efficiency
    55 exchange length
    56 ferrimagnet
    57 ferromagnet
    58 film thickness
    59 films
    60 formation
    61 interaction
    62 interface
    63 interfacial Dzyaloshinskii-Moriya interaction
    64 large Dzyaloshinskii-Moriya interaction
    65 length
    66 memory
    67 practical use
    68 questions
    69 racetrack memory
    70 reduction
    71 results
    72 robust formation
    73 room temperature
    74 shape
    75 significant reduction
    76 simulations
    77 size
    78 size of skyrmions
    79 skyrmions
    80 spin
    81 spintronic applications
    82 stability
    83 stochastic Landau-Lifshitz
    84 study
    85 temperature
    86 thick films
    87 thickness
    88 thin-film ferromagnets
    89 use
    90 schema:name Robust Formation of Ultrasmall Room-Temperature Neél Skyrmions in Amorphous Ferrimagnets from Atomistic Simulations
    91 schema:pagination 9964
    92 schema:productId N1164d1f257424e9887fc63aec40eef71
    93 N3ccdf8882c594ec4a251ea20ea82f2d2
    94 N4fbdba90c8c143ae970cf5b3977cd26f
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117869772
    96 https://doi.org/10.1038/s41598-019-46458-4
    97 schema:sdDatePublished 2022-09-02T16:03
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N5ea9d2e9a582432f8367b94d3e76f97b
    100 schema:url https://doi.org/10.1038/s41598-019-46458-4
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N06fa87d7ad174486b15bdc203d8aac76 schema:issueNumber 1
    105 rdf:type schema:PublicationIssue
    106 N1164d1f257424e9887fc63aec40eef71 schema:name pubmed_id
    107 schema:value 31292514
    108 rdf:type schema:PropertyValue
    109 N144dc67131b44b8a99f39959a6ee28cf schema:volumeNumber 9
    110 rdf:type schema:PublicationVolume
    111 N3ccdf8882c594ec4a251ea20ea82f2d2 schema:name dimensions_id
    112 schema:value pub.1117869772
    113 rdf:type schema:PropertyValue
    114 N3df0de4f82b64ab18c0432aab029454b rdf:first sg:person.015156245224.36
    115 rdf:rest Ne7534a913d3249358b5607e4a07843dc
    116 N47b0f889dd1742c581b79314cc26772e rdf:first sg:person.010252015157.28
    117 rdf:rest rdf:nil
    118 N4fbdba90c8c143ae970cf5b3977cd26f schema:name doi
    119 schema:value 10.1038/s41598-019-46458-4
    120 rdf:type schema:PropertyValue
    121 N5ea9d2e9a582432f8367b94d3e76f97b schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N6cbfea30244241c58e0da17dcd210759 rdf:first sg:person.01304445360.09
    124 rdf:rest N47b0f889dd1742c581b79314cc26772e
    125 N9b07d682e150496dbe84bc0f395bc98d rdf:first sg:person.011300717101.59
    126 rdf:rest N3df0de4f82b64ab18c0432aab029454b
    127 Ne7534a913d3249358b5607e4a07843dc rdf:first sg:person.016600150604.18
    128 rdf:rest N6cbfea30244241c58e0da17dcd210759
    129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Engineering
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Materials Engineering
    134 rdf:type schema:DefinedTerm
    135 sg:grant.4107986 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-46458-4
    136 rdf:type schema:MonetaryGrant
    137 sg:journal.1045337 schema:issn 2045-2322
    138 schema:name Scientific Reports
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
    142 schema:familyName Poon
    143 schema:givenName S. Joseph
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
    145 rdf:type schema:Person
    146 sg:person.011300717101.59 schema:affiliation grid-institutes:grid.27755.32
    147 schema:familyName Ma
    148 schema:givenName Chung Ting
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300717101.59
    150 rdf:type schema:Person
    151 sg:person.01304445360.09 schema:affiliation grid-institutes:grid.27755.32
    152 schema:familyName Ghosh
    153 schema:givenName Avik W.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304445360.09
    155 rdf:type schema:Person
    156 sg:person.015156245224.36 schema:affiliation grid-institutes:grid.27755.32
    157 schema:familyName Xie
    158 schema:givenName Yunkun
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156245224.36
    160 rdf:type schema:Person
    161 sg:person.016600150604.18 schema:affiliation grid-institutes:grid.22448.38
    162 schema:familyName Sheng
    163 schema:givenName Howard
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600150604.18
    165 rdf:type schema:Person
    166 sg:pub.10.1038/nature04421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019106955
    167 https://doi.org/10.1038/nature04421
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
    170 https://doi.org/10.1038/nature05056
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
    173 https://doi.org/10.1038/nature09124
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nature09901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020854198
    176 https://doi.org/10.1038/nature09901
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/ncomms1666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026224499
    179 https://doi.org/10.1038/ncomms1666
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/ncomms1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030997696
    182 https://doi.org/10.1038/ncomms1990
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/ncomms3671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017044158
    185 https://doi.org/10.1038/ncomms3671
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nmat2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000753350
    188 https://doi.org/10.1038/nmat2916
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nmat3864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035520234
    191 https://doi.org/10.1038/nmat3864
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nmat3886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038723767
    194 https://doi.org/10.1038/nmat3886
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nmat4593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009287387
    197 https://doi.org/10.1038/nmat4593
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nmat4934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090738878
    200 https://doi.org/10.1038/nmat4934
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nmat4990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091911006
    203 https://doi.org/10.1038/nmat4990
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nnano.2013.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022657870
    206 https://doi.org/10.1038/nnano.2013.210
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nnano.2013.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510644
    209 https://doi.org/10.1038/nnano.2013.243
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
    212 https://doi.org/10.1038/nnano.2013.29
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nnano.2015.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035968585
    215 https://doi.org/10.1038/nnano.2015.315
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nphys3234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034404991
    218 https://doi.org/10.1038/nphys3234
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nphys3418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011251441
    221 https://doi.org/10.1038/nphys3418
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nphys3883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952070
    224 https://doi.org/10.1038/nphys3883
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nphys4000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030152479
    227 https://doi.org/10.1038/nphys4000
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/s41467-018-03378-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101269741
    230 https://doi.org/10.1038/s41467-018-03378-7
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/s41565-018-0255-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106931796
    233 https://doi.org/10.1038/s41565-018-0255-3
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41598-018-22242-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101459037
    236 https://doi.org/10.1038/s41598-018-22242-8
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/srep06784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003042361
    239 https://doi.org/10.1038/srep06784
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/srep09400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012698622
    242 https://doi.org/10.1038/srep09400
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/srep24795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025989791
    245 https://doi.org/10.1038/srep24795
    246 rdf:type schema:CreativeWork
    247 grid-institutes:grid.22448.38 schema:alternateName Department of Physics and Astronomy, George Mason University, 22030, Fairfax, Virginia, USA
    248 schema:name Department of Physics and Astronomy, George Mason University, 22030, Fairfax, Virginia, USA
    249 rdf:type schema:Organization
    250 grid-institutes:grid.27755.32 schema:alternateName Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
    251 Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA
    252 schema:name Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
    253 Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA
    254 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...