Excision and transfer of an integrating and conjugative element in a bacterial species with high recombination efficiency View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-06-20

AUTHORS

Evelyn Weiss, Carolin Spicher, Rainer Haas, Wolfgang Fischer

ABSTRACT

Horizontal transfer of mobile genetic elements, such as integrating and conjugative elements (ICEs), plays an important role in generating diversity and maintaining comprehensive pan-genomes in bacterial populations. The human gastric pathogen Helicobacter pylori, which is known for its extreme genetic diversity, possesses highly efficient transformation and recombination systems to achieve this diversity, but it is unclear to what extent these systems influence ICE physiology. In this study, we have examined the excision/integration and horizontal transfer characteristics of an ICE (termed ICEHptfs4) in these bacteria. We show that transfer of ICEHptfs4 DNA during mating between donor and recipient strains is independent of its conjugation genes, and that homologous recombination is much more efficient than site-specific integration into the recipient chromosome. Nevertheless, ICEHptfs4 excision by site-specific recombination occurs permanently in a subpopulation of cells and involves relocation of a circularization-dependent promoter. Selection experiments for excision indicate that the circular form of ICEHptfs4 is not replicative, but readily reintegrates by site-specific recombination. Thus, although ICEHptfs4 harbours all essential transfer genes, and typical ICE functions such as site-specific integration are active in H. pylori, canonical ICE transfer is subordinate to the more efficient general DNA uptake and homologous recombination machineries in these bacteria. More... »

PAGES

8915

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-45429-z

DOI

http://dx.doi.org/10.1038/s41598-019-45429-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117296602

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31222169


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conjugation, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Transfer, Horizontal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homologous Recombination", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Evelyn", 
        "id": "sg:person.01050110575.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050110575.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spicher", 
        "givenName": "Carolin", 
        "id": "sg:person.0654105426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654105426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haas", 
        "givenName": "Rainer", 
        "id": "sg:person.01127414674.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127414674.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU M\u00fcnchen, 80336, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Wolfgang", 
        "id": "sg:person.01300565575.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300565575.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrmicro1658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000911492", 
          "https://doi.org/10.1038/nrmicro1658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006326499", 
          "https://doi.org/10.1038/ncomms11995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050182699", 
          "https://doi.org/10.1038/nature08756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022443334", 
          "https://doi.org/10.1038/nrmicro2382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-014-0938-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035348372", 
          "https://doi.org/10.1007/s00535-014-0938-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003930985", 
          "https://doi.org/10.1186/1471-2164-15-310"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06-20", 
    "datePublishedReg": "2019-06-20", 
    "description": "Horizontal transfer of mobile genetic elements, such as integrating and conjugative elements (ICEs), plays an important role in generating diversity and maintaining comprehensive pan-genomes in bacterial populations. The human gastric pathogen Helicobacter pylori, which is known for its extreme genetic diversity, possesses highly efficient transformation and recombination systems to achieve this diversity, but it is unclear to what extent these systems influence ICE physiology. In this study, we have examined the excision/integration and horizontal transfer characteristics of an ICE (termed ICEHptfs4) in these bacteria. We show that transfer of ICEHptfs4 DNA during mating between donor and recipient strains is independent of its conjugation genes, and that homologous recombination is much more efficient than site-specific integration into the recipient chromosome. Nevertheless, ICEHptfs4 excision by site-specific recombination occurs permanently in a subpopulation of cells and involves relocation of a circularization-dependent promoter. Selection experiments for excision indicate that the circular form of ICEHptfs4 is not replicative, but readily reintegrates by site-specific recombination. Thus, although ICEHptfs4 harbours all essential transfer genes, and typical ICE functions such as site-specific integration are active in H. pylori, canonical ICE transfer is subordinate to the more efficient general DNA uptake and homologous recombination machineries in these bacteria.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-019-45429-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "site-specific integration", 
      "site-specific recombination", 
      "human gastric pathogen Helicobacter pylori", 
      "essential transfer genes", 
      "conjugative elements", 
      "homologous recombination machinery", 
      "excision/integration", 
      "gastric pathogen Helicobacter pylori", 
      "extreme genetic diversity", 
      "mobile genetic elements", 
      "pathogen Helicobacter pylori", 
      "recombination machinery", 
      "genetic diversity", 
      "DNA uptake", 
      "homologous recombination", 
      "horizontal transfer", 
      "recombination system", 
      "genetic elements", 
      "conjugation genes", 
      "subpopulation of cells", 
      "transfer genes", 
      "ICE transfer", 
      "selection experiments", 
      "bacterial populations", 
      "bacterial species", 
      "recipient chromosome", 
      "ice functions", 
      "diversity", 
      "circular form", 
      "high recombination efficiency", 
      "genes", 
      "recombination", 
      "recipient strain", 
      "bacteria", 
      "recombination efficiency", 
      "efficient transformation", 
      "important role", 
      "chromosomes", 
      "promoter", 
      "machinery", 
      "mating", 
      "species", 
      "DNA", 
      "physiology", 
      "cells", 
      "Helicobacter pylori", 
      "strains", 
      "uptake", 
      "subpopulations", 
      "H. pylori", 
      "role", 
      "population", 
      "elements", 
      "transfer", 
      "function", 
      "pylori", 
      "relocation", 
      "form", 
      "extent", 
      "integration", 
      "experiments", 
      "donors", 
      "system", 
      "transformation", 
      "study", 
      "excision", 
      "efficiency", 
      "characteristics", 
      "ice", 
      "transfer characteristics"
    ], 
    "name": "Excision and transfer of an integrating and conjugative element in a bacterial species with high recombination efficiency", 
    "pagination": "8915", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117296602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-45429-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31222169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-45429-z", 
      "https://app.dimensions.ai/details/publication/pub.1117296602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_818.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-019-45429-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-45429-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-45429-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-45429-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-45429-z'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      106 URIs      92 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-45429-z schema:about N073661d2c07f4105ae1f732542f7258c
2 N90ed93a422e44aa29e7fc241a88eae18
3 Nca5b43f2fd62415d8a509aca3093410d
4 Ncbfda2475f5a464595ff900a729a0633
5 Nd5045868c41140a49aee60a6ef737128
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N9ff83915c4a04f90a9a7aa3965cd3564
9 schema:citation sg:pub.10.1007/s00535-014-0938-y
10 sg:pub.10.1038/nature08756
11 sg:pub.10.1038/ncomms11995
12 sg:pub.10.1038/nrmicro1658
13 sg:pub.10.1038/nrmicro2382
14 sg:pub.10.1186/1471-2164-15-310
15 schema:datePublished 2019-06-20
16 schema:datePublishedReg 2019-06-20
17 schema:description Horizontal transfer of mobile genetic elements, such as integrating and conjugative elements (ICEs), plays an important role in generating diversity and maintaining comprehensive pan-genomes in bacterial populations. The human gastric pathogen Helicobacter pylori, which is known for its extreme genetic diversity, possesses highly efficient transformation and recombination systems to achieve this diversity, but it is unclear to what extent these systems influence ICE physiology. In this study, we have examined the excision/integration and horizontal transfer characteristics of an ICE (termed ICEHptfs4) in these bacteria. We show that transfer of ICEHptfs4 DNA during mating between donor and recipient strains is independent of its conjugation genes, and that homologous recombination is much more efficient than site-specific integration into the recipient chromosome. Nevertheless, ICEHptfs4 excision by site-specific recombination occurs permanently in a subpopulation of cells and involves relocation of a circularization-dependent promoter. Selection experiments for excision indicate that the circular form of ICEHptfs4 is not replicative, but readily reintegrates by site-specific recombination. Thus, although ICEHptfs4 harbours all essential transfer genes, and typical ICE functions such as site-specific integration are active in H. pylori, canonical ICE transfer is subordinate to the more efficient general DNA uptake and homologous recombination machineries in these bacteria.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N81cf6feabbeb4d74baa2c1a9bad97d08
21 Nb95bf267fda3478eab3de1680f18fbda
22 sg:journal.1045337
23 schema:keywords DNA
24 DNA uptake
25 H. pylori
26 Helicobacter pylori
27 ICE transfer
28 bacteria
29 bacterial populations
30 bacterial species
31 cells
32 characteristics
33 chromosomes
34 circular form
35 conjugation genes
36 conjugative elements
37 diversity
38 donors
39 efficiency
40 efficient transformation
41 elements
42 essential transfer genes
43 excision
44 excision/integration
45 experiments
46 extent
47 extreme genetic diversity
48 form
49 function
50 gastric pathogen Helicobacter pylori
51 genes
52 genetic diversity
53 genetic elements
54 high recombination efficiency
55 homologous recombination
56 homologous recombination machinery
57 horizontal transfer
58 human gastric pathogen Helicobacter pylori
59 ice
60 ice functions
61 important role
62 integration
63 machinery
64 mating
65 mobile genetic elements
66 pathogen Helicobacter pylori
67 physiology
68 population
69 promoter
70 pylori
71 recipient chromosome
72 recipient strain
73 recombination
74 recombination efficiency
75 recombination machinery
76 recombination system
77 relocation
78 role
79 selection experiments
80 site-specific integration
81 site-specific recombination
82 species
83 strains
84 study
85 subpopulation of cells
86 subpopulations
87 system
88 transfer
89 transfer characteristics
90 transfer genes
91 transformation
92 uptake
93 schema:name Excision and transfer of an integrating and conjugative element in a bacterial species with high recombination efficiency
94 schema:pagination 8915
95 schema:productId N72e05c8d13e74215b9a82fff169c0208
96 N930912d4dc514e07ab3ba2974be89e95
97 Ne66172ecad5c4fbdb35fb6f7d89173b1
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117296602
99 https://doi.org/10.1038/s41598-019-45429-z
100 schema:sdDatePublished 2022-08-04T17:07
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher Nc27fbf71099a4c85846272499ebf45c7
103 schema:url https://doi.org/10.1038/s41598-019-45429-z
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N073661d2c07f4105ae1f732542f7258c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Conjugation, Genetic
109 rdf:type schema:DefinedTerm
110 N4d27118c7be246e69ac8934fe2719990 rdf:first sg:person.01300565575.05
111 rdf:rest rdf:nil
112 N72e05c8d13e74215b9a82fff169c0208 schema:name dimensions_id
113 schema:value pub.1117296602
114 rdf:type schema:PropertyValue
115 N81cf6feabbeb4d74baa2c1a9bad97d08 schema:volumeNumber 9
116 rdf:type schema:PublicationVolume
117 N90ed93a422e44aa29e7fc241a88eae18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Bacteria
119 rdf:type schema:DefinedTerm
120 N930912d4dc514e07ab3ba2974be89e95 schema:name doi
121 schema:value 10.1038/s41598-019-45429-z
122 rdf:type schema:PropertyValue
123 N9ff83915c4a04f90a9a7aa3965cd3564 rdf:first sg:person.01050110575.60
124 rdf:rest Neaddaea1b64d4b018056f548b3fd0feb
125 Nb95bf267fda3478eab3de1680f18fbda schema:issueNumber 1
126 rdf:type schema:PublicationIssue
127 Nc27fbf71099a4c85846272499ebf45c7 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nca5b43f2fd62415d8a509aca3093410d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Homologous Recombination
131 rdf:type schema:DefinedTerm
132 Ncbfda2475f5a464595ff900a729a0633 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Gene Transfer, Horizontal
134 rdf:type schema:DefinedTerm
135 Nd5045868c41140a49aee60a6ef737128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Chromosomes, Bacterial
137 rdf:type schema:DefinedTerm
138 Ne66172ecad5c4fbdb35fb6f7d89173b1 schema:name pubmed_id
139 schema:value 31222169
140 rdf:type schema:PropertyValue
141 Ne8b90ed0f7044ef6978d00c796af41e5 rdf:first sg:person.01127414674.14
142 rdf:rest N4d27118c7be246e69ac8934fe2719990
143 Neaddaea1b64d4b018056f548b3fd0feb rdf:first sg:person.0654105426.21
144 rdf:rest Ne8b90ed0f7044ef6978d00c796af41e5
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
149 schema:name Genetics
150 rdf:type schema:DefinedTerm
151 sg:journal.1045337 schema:issn 2045-2322
152 schema:name Scientific Reports
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01050110575.60 schema:affiliation grid-institutes:grid.5252.0
156 schema:familyName Weiss
157 schema:givenName Evelyn
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050110575.60
159 rdf:type schema:Person
160 sg:person.01127414674.14 schema:affiliation grid-institutes:grid.5252.0
161 schema:familyName Haas
162 schema:givenName Rainer
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127414674.14
164 rdf:type schema:Person
165 sg:person.01300565575.05 schema:affiliation grid-institutes:grid.5252.0
166 schema:familyName Fischer
167 schema:givenName Wolfgang
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300565575.05
169 rdf:type schema:Person
170 sg:person.0654105426.21 schema:affiliation grid-institutes:grid.5252.0
171 schema:familyName Spicher
172 schema:givenName Carolin
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654105426.21
174 rdf:type schema:Person
175 sg:pub.10.1007/s00535-014-0938-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035348372
176 https://doi.org/10.1007/s00535-014-0938-y
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature08756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050182699
179 https://doi.org/10.1038/nature08756
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/ncomms11995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006326499
182 https://doi.org/10.1038/ncomms11995
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nrmicro1658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000911492
185 https://doi.org/10.1038/nrmicro1658
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nrmicro2382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022443334
188 https://doi.org/10.1038/nrmicro2382
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2164-15-310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003930985
191 https://doi.org/10.1186/1471-2164-15-310
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.5252.0 schema:alternateName Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU München, 80336, München, Germany
194 schema:name Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU München, 80336, München, Germany
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...