Designing a highly efficient graphene quantum spin heat engine. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Arjun Mani, Subhajit Pal, Colin Benjamin

ABSTRACT

We design a quantum spin heat engine using spin polarized ballistic modes generated in a strained graphene monolayer doped with a magnetic impurity. We observe remarkably large efficiency and large thermoelectric figure of merit both for the charge as well as spin variants of the quantum heat engine. This suggests the use of this device as a highly efficient quantum heat engine for charge as well as spin based transport. Further, a comparison is drawn between the device characteristics of a graphene spin heat engine against a quantum spin Hall heat engine. The reason being edge modes because of their origin should give much better performance. In this respect we observe our graphene based spin heat engine can almost match the performance characteristics of a quantum spin Hall heat engine. Finally, we show that a pure spin current can be transported in our device in absence of any charge current. More... »

PAGES

6018

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-42279-7

DOI

http://dx.doi.org/10.1038/s41598-019-42279-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113380312

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30979964


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Science Education and Research", 
          "id": "https://www.grid.ac/institutes/grid.419643.d", 
          "name": [
            "School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni, 752050, India."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mani", 
        "givenName": "Arjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Science Education and Research", 
          "id": "https://www.grid.ac/institutes/grid.419643.d", 
          "name": [
            "School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni, 752050, India."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pal", 
        "givenName": "Subhajit", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Science Education and Research", 
          "id": "https://www.grid.ac/institutes/grid.419643.d", 
          "name": [
            "School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni, 752050, India. colin.nano@gmail.com."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benjamin", 
        "givenName": "Colin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/nl500755m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002415561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.235408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005821839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.235408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005821839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.195406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009847488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.195406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009847488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn800459e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011067471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.205433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016492548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.205433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016492548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016498008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018153553", 
          "https://doi.org/10.1038/nmat3301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/99/27001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019178010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.046801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020923424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.046801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020923424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021533520", 
          "https://doi.org/10.1038/nphys384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021533520", 
          "https://doi.org/10.1038/nphys384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.075426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022087681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.075426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022087681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023991100", 
          "https://doi.org/10.1038/nmat3064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025389042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2000049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026657934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2000049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026657934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029473794", 
          "https://doi.org/10.1038/nnano.2010.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029473794", 
          "https://doi.org/10.1038/nnano.2010.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.045401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029654650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.045401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029654650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4938469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034424626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl504257q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036033035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5nr07755a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037498426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4943237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038599701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4884424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039283608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039930038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.096807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.096807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.061108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044743762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.061108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044743762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.161414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046090972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.161414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046090972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.121407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046159700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.121407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046159700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.066802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046494542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.066802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046494542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047042012", 
          "https://doi.org/10.1038/srep01380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.235411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048765824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.235411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048765824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/9/353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052018065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/28/3/035305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059114195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aa57fc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059182985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.235426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.235426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.155407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.155407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.085418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.085418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.245432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.245432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.042165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.042165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.056802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.056802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2015.2436362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061688212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.14041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062231659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3762/bjnano.6.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071378940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aa6c10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085299249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-02230-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085537699", 
          "https://doi.org/10.1038/s41598-017-02230-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.032118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091691030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.032118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091691030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-19632-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100320661", 
          "https://doi.org/10.1038/s41598-018-19632-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.022114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.022114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.052152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106248169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.052152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106248169"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We design a quantum spin heat engine using spin polarized ballistic modes generated in a strained graphene monolayer doped with a magnetic impurity. We observe remarkably large efficiency and large thermoelectric figure of merit both for the charge as well as spin variants of the quantum heat engine. This suggests the use of this device as a highly efficient quantum heat engine for charge as well as spin based transport. Further, a comparison is drawn between the device characteristics of a graphene spin heat engine against a quantum spin Hall heat engine. The reason being edge modes because of their origin should give much better performance. In this respect we observe our graphene based spin heat engine can almost match the performance characteristics of a quantum spin Hall heat engine. Finally, we show that a pure spin current can be transported in our device in absence of any charge current.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-42279-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Designing a highly efficient graphene quantum spin heat engine.", 
    "pagination": "6018", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-42279-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113380312"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30979964"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-42279-7", 
      "https://app.dimensions.ai/details/publication/pub.1113380312"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106831_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41598-019-42279-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42279-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42279-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42279-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42279-7'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      77 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-42279-7 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nfc3d04c3668f4ccca640bae3e2bd697b
4 schema:citation sg:pub.10.1038/nmat3064
5 sg:pub.10.1038/nmat3301
6 sg:pub.10.1038/nnano.2010.53
7 sg:pub.10.1038/nphys384
8 sg:pub.10.1038/s41598-017-02230-0
9 sg:pub.10.1038/s41598-018-19632-3
10 sg:pub.10.1038/srep01380
11 https://doi.org/10.1002/smll.201303701
12 https://doi.org/10.1016/j.carbon.2016.09.025
13 https://doi.org/10.1016/j.physe.2015.05.020
14 https://doi.org/10.1021/nl2000049
15 https://doi.org/10.1021/nl500755m
16 https://doi.org/10.1021/nl504257q
17 https://doi.org/10.1021/nn800459e
18 https://doi.org/10.1039/c5nr07755a
19 https://doi.org/10.1063/1.4884424
20 https://doi.org/10.1063/1.4938469
21 https://doi.org/10.1063/1.4943237
22 https://doi.org/10.1088/0953-8984/28/3/035305
23 https://doi.org/10.1088/1367-2630/9/9/353
24 https://doi.org/10.1088/2053-1583/aa57fc
25 https://doi.org/10.1088/2053-1583/aa6c10
26 https://doi.org/10.1103/physrevb.79.205433
27 https://doi.org/10.1103/physrevb.80.045401
28 https://doi.org/10.1103/physrevb.80.235411
29 https://doi.org/10.1103/physrevb.82.161414
30 https://doi.org/10.1103/physrevb.82.235408
31 https://doi.org/10.1103/physrevb.83.235426
32 https://doi.org/10.1103/physrevb.84.195447
33 https://doi.org/10.1103/physrevb.89.075426
34 https://doi.org/10.1103/physrevb.89.121407
35 https://doi.org/10.1103/physrevb.90.125447
36 https://doi.org/10.1103/physrevb.91.155407
37 https://doi.org/10.1103/physrevb.91.195406
38 https://doi.org/10.1103/physrevb.92.085418
39 https://doi.org/10.1103/physrevb.93.245432
40 https://doi.org/10.1103/physreve.86.061108
41 https://doi.org/10.1103/physreve.91.052152
42 https://doi.org/10.1103/physreve.92.042165
43 https://doi.org/10.1103/physreve.96.032118
44 https://doi.org/10.1103/physreve.97.022114
45 https://doi.org/10.1103/physrevlett.102.096807
46 https://doi.org/10.1103/physrevlett.103.046801
47 https://doi.org/10.1103/physrevlett.108.056802
48 https://doi.org/10.1103/physrevlett.98.066802
49 https://doi.org/10.1109/tmag.2015.2436362
50 https://doi.org/10.1119/1.14041
51 https://doi.org/10.1209/0295-5075/99/27001
52 https://doi.org/10.3762/bjnano.6.119
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description We design a quantum spin heat engine using spin polarized ballistic modes generated in a strained graphene monolayer doped with a magnetic impurity. We observe remarkably large efficiency and large thermoelectric figure of merit both for the charge as well as spin variants of the quantum heat engine. This suggests the use of this device as a highly efficient quantum heat engine for charge as well as spin based transport. Further, a comparison is drawn between the device characteristics of a graphene spin heat engine against a quantum spin Hall heat engine. The reason being edge modes because of their origin should give much better performance. In this respect we observe our graphene based spin heat engine can almost match the performance characteristics of a quantum spin Hall heat engine. Finally, we show that a pure spin current can be transported in our device in absence of any charge current.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N1415952975db4d8ca73b895b8f7c0ef5
60 N42c250bc301f41549ac6dfbdea3ddcce
61 sg:journal.1045337
62 schema:name Designing a highly efficient graphene quantum spin heat engine.
63 schema:pagination 6018
64 schema:productId N5d2a225758b54f66b3c37bc6a4930907
65 Nbbb4c02c050e4979a3675c07ba15df33
66 Nf1b31caee3364724bd0fafb75c7c07b8
67 Nfb19ffa7e15a415982f715efda72b693
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113380312
69 https://doi.org/10.1038/s41598-019-42279-7
70 schema:sdDatePublished 2019-04-16T06:24
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N23b7be540ff344f5837922fc11345289
73 schema:url http://www.nature.com/articles/s41598-019-42279-7
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N1415952975db4d8ca73b895b8f7c0ef5 schema:volumeNumber 9
78 rdf:type schema:PublicationVolume
79 N1b1b0a93d4fc47c78d61eac1d7a241b1 schema:affiliation https://www.grid.ac/institutes/grid.419643.d
80 schema:familyName Pal
81 schema:givenName Subhajit
82 rdf:type schema:Person
83 N1b56f3f597f9484f8aa5592d8c6090a0 schema:affiliation https://www.grid.ac/institutes/grid.419643.d
84 schema:familyName Mani
85 schema:givenName Arjun
86 rdf:type schema:Person
87 N23b7be540ff344f5837922fc11345289 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N42c250bc301f41549ac6dfbdea3ddcce schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N5d2a225758b54f66b3c37bc6a4930907 schema:name doi
92 schema:value 10.1038/s41598-019-42279-7
93 rdf:type schema:PropertyValue
94 N92245a26e26b4688a177e2610865418b rdf:first N1b1b0a93d4fc47c78d61eac1d7a241b1
95 rdf:rest Nc5a064271c3f43b7a739fcae96fede97
96 Nbbb4c02c050e4979a3675c07ba15df33 schema:name nlm_unique_id
97 schema:value 101563288
98 rdf:type schema:PropertyValue
99 Nc5a064271c3f43b7a739fcae96fede97 rdf:first Nea682fcb608041649efd48c7ecc0c5b0
100 rdf:rest rdf:nil
101 Nea682fcb608041649efd48c7ecc0c5b0 schema:affiliation https://www.grid.ac/institutes/grid.419643.d
102 schema:familyName Benjamin
103 schema:givenName Colin
104 rdf:type schema:Person
105 Nf1b31caee3364724bd0fafb75c7c07b8 schema:name dimensions_id
106 schema:value pub.1113380312
107 rdf:type schema:PropertyValue
108 Nfb19ffa7e15a415982f715efda72b693 schema:name pubmed_id
109 schema:value 30979964
110 rdf:type schema:PropertyValue
111 Nfc3d04c3668f4ccca640bae3e2bd697b rdf:first N1b56f3f597f9484f8aa5592d8c6090a0
112 rdf:rest N92245a26e26b4688a177e2610865418b
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
117 schema:name Condensed Matter Physics
118 rdf:type schema:DefinedTerm
119 sg:journal.1045337 schema:issn 2045-2322
120 schema:name Scientific Reports
121 rdf:type schema:Periodical
122 sg:pub.10.1038/nmat3064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023991100
123 https://doi.org/10.1038/nmat3064
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nmat3301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018153553
126 https://doi.org/10.1038/nmat3301
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nnano.2010.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029473794
129 https://doi.org/10.1038/nnano.2010.53
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nphys384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021533520
132 https://doi.org/10.1038/nphys384
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/s41598-017-02230-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085537699
135 https://doi.org/10.1038/s41598-017-02230-0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/s41598-018-19632-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100320661
138 https://doi.org/10.1038/s41598-018-19632-3
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/srep01380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047042012
141 https://doi.org/10.1038/srep01380
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/smll.201303701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025389042
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.carbon.2016.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016498008
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.physe.2015.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039930038
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/nl2000049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026657934
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/nl500755m schema:sameAs https://app.dimensions.ai/details/publication/pub.1002415561
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/nl504257q schema:sameAs https://app.dimensions.ai/details/publication/pub.1036033035
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/nn800459e schema:sameAs https://app.dimensions.ai/details/publication/pub.1011067471
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1039/c5nr07755a schema:sameAs https://app.dimensions.ai/details/publication/pub.1037498426
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.4884424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039283608
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.4938469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034424626
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.4943237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038599701
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/0953-8984/28/3/035305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059114195
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/1367-2630/9/9/353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052018065
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/2053-1583/aa57fc schema:sameAs https://app.dimensions.ai/details/publication/pub.1059182985
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/2053-1583/aa6c10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085299249
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.79.205433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016492548
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.80.045401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029654650
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.80.235411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048765824
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.82.161414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046090972
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.82.235408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005821839
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.83.235426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060635929
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.84.195447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637462
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.89.075426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087681
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.89.121407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046159700
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.90.125447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644660
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.91.155407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060645707
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.91.195406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009847488
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.92.085418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646920
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.93.245432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650957
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physreve.86.061108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044743762
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physreve.91.052152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106248169
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physreve.92.042165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060748278
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreve.96.032118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091691030
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physreve.97.022114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010360
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.102.096807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041026766
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.103.046801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020923424
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.108.056802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759346
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.98.066802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046494542
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tmag.2015.2436362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061688212
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1119/1.14041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062231659
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1209/0295-5075/99/27001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019178010
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3762/bjnano.6.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071378940
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.419643.d schema:alternateName National Institute of Science Education and Research
228 schema:name School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni, 752050, India.
229 School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni, 752050, India. colin.nano@gmail.com.
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...