Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yang Qiao, Jing Wang, Guopeng Liang, Zhenggang Du, Jian Zhou, Chen Zhu, Kun Huang, Xuhui Zhou, Yiqi Luo, Liming Yan, Jianyang Xia

ABSTRACT

Soil microbial carbon-use efficiency (CUE), which is defined as the ratio of growth over C uptake, is commonly assumed as a constant or estimated by a temperature-dependent function in current microbial-explicit soil carbon (C) models. The temperature-dependent function (i.e., CUE = CUE0 + m × (T - 20)) simulates the dynamic CUE based on the specific CUE at a given reference temperature (i.e., CUE0) and a temperature response coefficient (i.e., m). Here, based on 780 observations from 98 sites, we showed a divergent spatial distribution of the soil microbial CUE (0.5 ± 0.25; mean ± SD) at the global scale. Then, the key parameters CUE0 and m in the above equation were estimated as 0.475 and -0.016, respectively, based on the observations with the Markov chain Monte Carlo technique. We also found a strong dependence of microbial CUE on the type of C substrate. The multiple regression analysis showed that glucose influences the variation of measured CUE associated with the environmental factors. Overall, this study confirms the global divergence of soil microbial CUE and calls for the incorporation of C substrate beside temperature in estimating the microbial CUE in different biomes. More... »

PAGES

5621

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6

DOI

http://dx.doi.org/10.1038/s41598-019-42145-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113185005

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30948759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiao", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Ecosystem Science and Society, Northern Arizona University, Arizona, Flagstaff, AZ, 86011, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Guopeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Zhenggang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Chen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xuhui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Ecosystem Science and Society, Northern Arizona University, Arizona, Flagstaff, AZ, 86011, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Yiqi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. lmyan@des.ecnu.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Liming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. jyxia@des.ecnu.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Jianyang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/ele.12113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001774340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260320112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002750851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2006.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003302608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ele.12254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004582926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/12-0681.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004991346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010693614196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006141238", 
          "https://doi.org/10.1023/a:1010693614196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/05-0383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006560529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jg001434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007454311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008043941", 
          "https://doi.org/10.1038/ngeo846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008043941", 
          "https://doi.org/10.1038/ngeo846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260221202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008477557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008943245", 
          "https://doi.org/10.1038/srep15783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009188441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011143071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10533-013-9948-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012260319", 
          "https://doi.org/10.1007/s10533-013-9948-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.mi.24.100170.000313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012662668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00336164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012752812", 
          "https://doi.org/10.1007/bf00336164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00336164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012752812", 
          "https://doi.org/10.1007/bf00336164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014138864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016354786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016572706", 
          "https://doi.org/10.1038/nclimate1796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bg-8-477-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017617079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2004.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018097172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2008.01251.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021738617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2012.04225.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021933047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.283.15.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023723086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2011.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023831266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2011.02496.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024029703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400522101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026323922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-0717(03)00015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027099910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027735181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gb005188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029565836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2008.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032392992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036681072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037575666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.funeco.2011.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037627376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039662894", 
          "https://doi.org/10.1038/nclimate2436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2012.01837.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039999206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043331772", 
          "https://doi.org/10.1038/nclimate1951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.2006.00809.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043854437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050821463", 
          "https://doi.org/10.1038/ngeo2093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2011.02615.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050950853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bg-13-1733-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072662170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082126106", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ecm.1258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084011358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4067/s0718-95162015005000055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103398524"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Soil microbial carbon-use efficiency (CUE), which is defined as the ratio of growth over C uptake, is commonly assumed as a constant or estimated by a temperature-dependent function in current microbial-explicit soil carbon (C) models. The temperature-dependent function (i.e., CUE\u2009=\u2009CUE0\u2009+\u2009m\u2009\u00d7\u2009(T - 20)) simulates the dynamic CUE based on the specific CUE at a given reference temperature (i.e., CUE0) and a temperature response coefficient (i.e., m). Here, based on 780 observations from 98 sites, we showed a divergent spatial distribution of the soil microbial CUE (0.5\u2009\u00b1\u20090.25; mean\u2009\u00b1\u2009SD) at the global scale. Then, the key parameters CUE0 and m in the above equation were estimated as 0.475 and -0.016, respectively, based on the observations with the Markov chain Monte Carlo technique. We also found a strong dependence of microbial CUE on the type of C substrate. The multiple regression analysis showed that glucose influences the variation of measured CUE associated with the environmental factors. Overall, this study confirms the global divergence of soil microbial CUE and calls for the incorporation of C substrate beside temperature in estimating the microbial CUE in different biomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-42145-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply.", 
    "pagination": "5621", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-42145-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113185005"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30948759"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-42145-6", 
      "https://app.dimensions.ai/details/publication/pub.1113185005"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56158_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41598-019-42145-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      74 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-42145-6 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Nf325e76d02e344c7aef1318605635b91
4 schema:citation sg:pub.10.1007/bf00336164
5 sg:pub.10.1007/s10533-013-9948-8
6 sg:pub.10.1023/a:1010693614196
7 sg:pub.10.1038/nclimate1796
8 sg:pub.10.1038/nclimate1951
9 sg:pub.10.1038/nclimate2436
10 sg:pub.10.1038/ngeo2093
11 sg:pub.10.1038/ngeo846
12 sg:pub.10.1038/srep15783
13 https://app.dimensions.ai/details/publication/pub.1082126106
14 https://doi.org/10.1001/jama.283.15.2008
15 https://doi.org/10.1002/2015gb005188
16 https://doi.org/10.1002/bit.260221202
17 https://doi.org/10.1002/bit.260320112
18 https://doi.org/10.1002/ecm.1258
19 https://doi.org/10.1016/j.advwatres.2006.05.025
20 https://doi.org/10.1016/j.funeco.2011.03.005
21 https://doi.org/10.1016/j.soilbio.2004.06.010
22 https://doi.org/10.1016/j.soilbio.2008.07.002
23 https://doi.org/10.1016/j.soilbio.2011.05.018
24 https://doi.org/10.1016/s0038-0717(03)00015-4
25 https://doi.org/10.1029/2010jg001434
26 https://doi.org/10.1063/1.1699114
27 https://doi.org/10.1073/pnas.0400522101
28 https://doi.org/10.1093/biomet/57.1.97
29 https://doi.org/10.1111/ele.12113
30 https://doi.org/10.1111/ele.12254
31 https://doi.org/10.1111/gcb.12036
32 https://doi.org/10.1111/gcb.12112
33 https://doi.org/10.1111/gcb.12113
34 https://doi.org/10.1111/gcb.12718
35 https://doi.org/10.1111/gcb.12827
36 https://doi.org/10.1111/j.1365-2389.2006.00809.x
37 https://doi.org/10.1111/j.1365-2486.2011.02496.x
38 https://doi.org/10.1111/j.1365-2486.2011.02615.x
39 https://doi.org/10.1111/j.1461-0248.2008.01251.x
40 https://doi.org/10.1111/j.1461-0248.2012.01837.x
41 https://doi.org/10.1111/j.1469-8137.2012.04225.x
42 https://doi.org/10.1126/science.1061967
43 https://doi.org/10.1146/annurev.mi.24.100170.000313
44 https://doi.org/10.1371/journal.pmed.1000097
45 https://doi.org/10.1890/05-0383
46 https://doi.org/10.1890/12-0681.1
47 https://doi.org/10.4067/s0718-95162015005000055
48 https://doi.org/10.5194/bg-13-1733-2016
49 https://doi.org/10.5194/bg-8-477-2011
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description Soil microbial carbon-use efficiency (CUE), which is defined as the ratio of growth over C uptake, is commonly assumed as a constant or estimated by a temperature-dependent function in current microbial-explicit soil carbon (C) models. The temperature-dependent function (i.e., CUE = CUE<sub>0</sub> + m × (T - 20)) simulates the dynamic CUE based on the specific CUE at a given reference temperature (i.e., CUE<sub>0</sub>) and a temperature response coefficient (i.e., m). Here, based on 780 observations from 98 sites, we showed a divergent spatial distribution of the soil microbial CUE (0.5 ± 0.25; mean ± SD) at the global scale. Then, the key parameters CUE<sub>0</sub> and m in the above equation were estimated as 0.475 and -0.016, respectively, based on the observations with the Markov chain Monte Carlo technique. We also found a strong dependence of microbial CUE on the type of C substrate. The multiple regression analysis showed that glucose influences the variation of measured CUE associated with the environmental factors. Overall, this study confirms the global divergence of soil microbial CUE and calls for the incorporation of C substrate beside temperature in estimating the microbial CUE in different biomes.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N8832527ffb864bbf9f15ea2b81529d1d
57 N957bb6c84b864def8851290ffbd399c1
58 sg:journal.1045337
59 schema:name Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply.
60 schema:pagination 5621
61 schema:productId N27a2e76351ab48d1805fc647e4d3906f
62 N57a7f821ed4a42d2ae2321fd19ccb741
63 Nd723a61261174d68930f03d5820de373
64 Nd9d24d1ecf1949e29a7c2b3a738ed8fd
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113185005
66 https://doi.org/10.1038/s41598-019-42145-6
67 schema:sdDatePublished 2019-04-15T09:11
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N71413e366f73478eb2e0c1189e0f286d
70 schema:url http://www.nature.com/articles/s41598-019-42145-6
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0098f9859ab445f996c179ab73740183 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
75 schema:familyName Liang
76 schema:givenName Guopeng
77 rdf:type schema:Person
78 N0f874cc653b44d699f5151806f8f47e8 rdf:first N1f0fbc1cc0794a15bc917d2a25a7cb3b
79 rdf:rest N7b8b3fe7bd4f477098bc660e566ac81e
80 N1f0fbc1cc0794a15bc917d2a25a7cb3b schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
81 schema:familyName Zhu
82 schema:givenName Chen
83 rdf:type schema:Person
84 N1fcea2bcd9f14ce3aa4c252f6d59681a rdf:first Na064c07e7428442488092fdfaf9eaaa1
85 rdf:rest N92047086ab2f453487ff1fb7e154da8d
86 N27a2e76351ab48d1805fc647e4d3906f schema:name dimensions_id
87 schema:value pub.1113185005
88 rdf:type schema:PropertyValue
89 N3c5a5a27ff6642df8a6f4f52df23bb50 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
90 schema:familyName Xia
91 schema:givenName Jianyang
92 rdf:type schema:Person
93 N4cb4ed0e6e0541758537329b1f7e0295 rdf:first N9112046173e046f18b4fc175fc00d70e
94 rdf:rest N65d35aac36724fcaaf91795b46842602
95 N57a7f821ed4a42d2ae2321fd19ccb741 schema:name pubmed_id
96 schema:value 30948759
97 rdf:type schema:PropertyValue
98 N65d35aac36724fcaaf91795b46842602 rdf:first N0098f9859ab445f996c179ab73740183
99 rdf:rest N889d15d7d11f44dd99e35098dd22b3e1
100 N71413e366f73478eb2e0c1189e0f286d schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N7b8b3fe7bd4f477098bc660e566ac81e rdf:first Nb55ada94bcf04dc6aa5c5b43e34aaf00
103 rdf:rest Na2e2ec46b1414813833b0b291ab45cfd
104 N8832527ffb864bbf9f15ea2b81529d1d schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N889d15d7d11f44dd99e35098dd22b3e1 rdf:first Nd61061ae04fd4337a596508a7c7e7562
107 rdf:rest Ne8986768a6e54af6a1f3d19ef563c288
108 N9112046173e046f18b4fc175fc00d70e schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
109 schema:familyName Wang
110 schema:givenName Jing
111 rdf:type schema:Person
112 N92047086ab2f453487ff1fb7e154da8d rdf:first N3c5a5a27ff6642df8a6f4f52df23bb50
113 rdf:rest rdf:nil
114 N957bb6c84b864def8851290ffbd399c1 schema:volumeNumber 9
115 rdf:type schema:PublicationVolume
116 Na064c07e7428442488092fdfaf9eaaa1 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
117 schema:familyName Yan
118 schema:givenName Liming
119 rdf:type schema:Person
120 Na2e2ec46b1414813833b0b291ab45cfd rdf:first Nab22e26429e7410c871063285e9b9b2d
121 rdf:rest Na67c86149ae74213bc08702d760c7637
122 Na67c86149ae74213bc08702d760c7637 rdf:first Ndc6e760a94854adba6e5f7f5d3fc5878
123 rdf:rest N1fcea2bcd9f14ce3aa4c252f6d59681a
124 Nab22e26429e7410c871063285e9b9b2d schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
125 schema:familyName Zhou
126 schema:givenName Xuhui
127 rdf:type schema:Person
128 Nb55ada94bcf04dc6aa5c5b43e34aaf00 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
129 schema:familyName Huang
130 schema:givenName Kun
131 rdf:type schema:Person
132 Nbefe2f0e45f140faaf94cea797166e4a schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
133 schema:familyName Zhou
134 schema:givenName Jian
135 rdf:type schema:Person
136 Nd61061ae04fd4337a596508a7c7e7562 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
137 schema:familyName Du
138 schema:givenName Zhenggang
139 rdf:type schema:Person
140 Nd723a61261174d68930f03d5820de373 schema:name doi
141 schema:value 10.1038/s41598-019-42145-6
142 rdf:type schema:PropertyValue
143 Nd9d24d1ecf1949e29a7c2b3a738ed8fd schema:name nlm_unique_id
144 schema:value 101563288
145 rdf:type schema:PropertyValue
146 Ndc6e760a94854adba6e5f7f5d3fc5878 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
147 schema:familyName Luo
148 schema:givenName Yiqi
149 rdf:type schema:Person
150 Ne8986768a6e54af6a1f3d19ef563c288 rdf:first Nbefe2f0e45f140faaf94cea797166e4a
151 rdf:rest N0f874cc653b44d699f5151806f8f47e8
152 Nf325e76d02e344c7aef1318605635b91 rdf:first Nf9b9edc8f466471683ebade90c855c8c
153 rdf:rest N4cb4ed0e6e0541758537329b1f7e0295
154 Nf9b9edc8f466471683ebade90c855c8c schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
155 schema:familyName Qiao
156 schema:givenName Yang
157 rdf:type schema:Person
158 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
159 schema:name Environmental Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
162 schema:name Soil Sciences
163 rdf:type schema:DefinedTerm
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 rdf:type schema:Periodical
167 sg:pub.10.1007/bf00336164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012752812
168 https://doi.org/10.1007/bf00336164
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s10533-013-9948-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012260319
171 https://doi.org/10.1007/s10533-013-9948-8
172 rdf:type schema:CreativeWork
173 sg:pub.10.1023/a:1010693614196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006141238
174 https://doi.org/10.1023/a:1010693614196
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nclimate1796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016572706
177 https://doi.org/10.1038/nclimate1796
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nclimate1951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043331772
180 https://doi.org/10.1038/nclimate1951
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nclimate2436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039662894
183 https://doi.org/10.1038/nclimate2436
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ngeo2093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050821463
186 https://doi.org/10.1038/ngeo2093
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ngeo846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008043941
189 https://doi.org/10.1038/ngeo846
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/srep15783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008943245
192 https://doi.org/10.1038/srep15783
193 rdf:type schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1082126106 schema:CreativeWork
195 https://doi.org/10.1001/jama.283.15.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023723086
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/2015gb005188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029565836
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/bit.260221202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008477557
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/bit.260320112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002750851
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/ecm.1258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084011358
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.advwatres.2006.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003302608
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.funeco.2011.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037627376
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.soilbio.2004.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018097172
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.soilbio.2008.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032392992
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.soilbio.2011.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023831266
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0038-0717(03)00015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027099910
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1029/2010jg001434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007454311
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0400522101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026323922
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/ele.12113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001774340
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/ele.12254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004582926
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/gcb.12036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036681072
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/gcb.12112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009188441
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/gcb.12113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011143071
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/gcb.12718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027735181
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1111/gcb.12827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016354786
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1111/j.1365-2389.2006.00809.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043854437
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1111/j.1365-2486.2011.02496.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024029703
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1111/j.1365-2486.2011.02615.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050950853
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1111/j.1461-0248.2008.01251.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021738617
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1111/j.1461-0248.2012.01837.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039999206
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/j.1469-8137.2012.04225.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021933047
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/science.1061967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014138864
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1146/annurev.mi.24.100170.000313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012662668
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pmed.1000097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037575666
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1890/05-0383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006560529
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1890/12-0681.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004991346
260 rdf:type schema:CreativeWork
261 https://doi.org/10.4067/s0718-95162015005000055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103398524
262 rdf:type schema:CreativeWork
263 https://doi.org/10.5194/bg-13-1733-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072662170
264 rdf:type schema:CreativeWork
265 https://doi.org/10.5194/bg-8-477-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017617079
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.22069.3f schema:alternateName East China Normal University
268 schema:name Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China.
269 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. jyxia@des.ecnu.edu.cn.
270 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. lmyan@des.ecnu.edu.cn.
271 rdf:type schema:Organization
272 https://www.grid.ac/institutes/grid.261120.6 schema:alternateName Northern Arizona University
273 schema:name Center for Ecosystem Science and Society, Northern Arizona University, Arizona, Flagstaff, AZ, 86011, USA.
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...