Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yang Qiao, Jing Wang, Guopeng Liang, Zhenggang Du, Jian Zhou, Chen Zhu, Kun Huang, Xuhui Zhou, Yiqi Luo, Liming Yan, Jianyang Xia

ABSTRACT

Soil microbial carbon-use efficiency (CUE), which is defined as the ratio of growth over C uptake, is commonly assumed as a constant or estimated by a temperature-dependent function in current microbial-explicit soil carbon (C) models. The temperature-dependent function (i.e., CUE = CUE0 + m × (T - 20)) simulates the dynamic CUE based on the specific CUE at a given reference temperature (i.e., CUE0) and a temperature response coefficient (i.e., m). Here, based on 780 observations from 98 sites, we showed a divergent spatial distribution of the soil microbial CUE (0.5 ± 0.25; mean ± SD) at the global scale. Then, the key parameters CUE0 and m in the above equation were estimated as 0.475 and -0.016, respectively, based on the observations with the Markov chain Monte Carlo technique. We also found a strong dependence of microbial CUE on the type of C substrate. The multiple regression analysis showed that glucose influences the variation of measured CUE associated with the environmental factors. Overall, this study confirms the global divergence of soil microbial CUE and calls for the incorporation of C substrate beside temperature in estimating the microbial CUE in different biomes. More... »

PAGES

5621

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6

DOI

http://dx.doi.org/10.1038/s41598-019-42145-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113185005

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30948759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiao", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Ecosystem Science and Society, Northern Arizona University, Arizona, Flagstaff, AZ, 86011, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Guopeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Zhenggang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Chen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xuhui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Ecosystem Science and Society, Northern Arizona University, Arizona, Flagstaff, AZ, 86011, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Yiqi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. lmyan@des.ecnu.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Liming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. jyxia@des.ecnu.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Jianyang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/ele.12113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001774340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260320112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002750851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2006.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003302608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ele.12254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004582926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/12-0681.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004991346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010693614196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006141238", 
          "https://doi.org/10.1023/a:1010693614196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/05-0383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006560529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jg001434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007454311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008043941", 
          "https://doi.org/10.1038/ngeo846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008043941", 
          "https://doi.org/10.1038/ngeo846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260221202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008477557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008943245", 
          "https://doi.org/10.1038/srep15783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009188441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011143071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10533-013-9948-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012260319", 
          "https://doi.org/10.1007/s10533-013-9948-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.mi.24.100170.000313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012662668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00336164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012752812", 
          "https://doi.org/10.1007/bf00336164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00336164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012752812", 
          "https://doi.org/10.1007/bf00336164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014138864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016354786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016572706", 
          "https://doi.org/10.1038/nclimate1796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bg-8-477-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017617079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2004.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018097172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2008.01251.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021738617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2012.04225.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021933047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.283.15.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023723086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2011.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023831266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2011.02496.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024029703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400522101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026323922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-0717(03)00015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027099910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027735181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gb005188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029565836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2008.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032392992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036681072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037575666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.funeco.2011.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037627376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039662894", 
          "https://doi.org/10.1038/nclimate2436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2012.01837.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039999206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043331772", 
          "https://doi.org/10.1038/nclimate1951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.2006.00809.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043854437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050821463", 
          "https://doi.org/10.1038/ngeo2093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2011.02615.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050950853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bg-13-1733-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072662170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082126106", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ecm.1258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084011358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4067/s0718-95162015005000055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103398524"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Soil microbial carbon-use efficiency (CUE), which is defined as the ratio of growth over C uptake, is commonly assumed as a constant or estimated by a temperature-dependent function in current microbial-explicit soil carbon (C) models. The temperature-dependent function (i.e., CUE\u2009=\u2009CUE0\u2009+\u2009m\u2009\u00d7\u2009(T - 20)) simulates the dynamic CUE based on the specific CUE at a given reference temperature (i.e., CUE0) and a temperature response coefficient (i.e., m). Here, based on 780 observations from 98 sites, we showed a divergent spatial distribution of the soil microbial CUE (0.5\u2009\u00b1\u20090.25; mean\u2009\u00b1\u2009SD) at the global scale. Then, the key parameters CUE0 and m in the above equation were estimated as 0.475 and -0.016, respectively, based on the observations with the Markov chain Monte Carlo technique. We also found a strong dependence of microbial CUE on the type of C substrate. The multiple regression analysis showed that glucose influences the variation of measured CUE associated with the environmental factors. Overall, this study confirms the global divergence of soil microbial CUE and calls for the incorporation of C substrate beside temperature in estimating the microbial CUE in different biomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-42145-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply.", 
    "pagination": "5621", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-42145-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113185005"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30948759"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-42145-6", 
      "https://app.dimensions.ai/details/publication/pub.1113185005"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56158_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41598-019-42145-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42145-6'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      74 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-42145-6 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Nd97ee18b438e412d8c571faef58171f7
4 schema:citation sg:pub.10.1007/bf00336164
5 sg:pub.10.1007/s10533-013-9948-8
6 sg:pub.10.1023/a:1010693614196
7 sg:pub.10.1038/nclimate1796
8 sg:pub.10.1038/nclimate1951
9 sg:pub.10.1038/nclimate2436
10 sg:pub.10.1038/ngeo2093
11 sg:pub.10.1038/ngeo846
12 sg:pub.10.1038/srep15783
13 https://app.dimensions.ai/details/publication/pub.1082126106
14 https://doi.org/10.1001/jama.283.15.2008
15 https://doi.org/10.1002/2015gb005188
16 https://doi.org/10.1002/bit.260221202
17 https://doi.org/10.1002/bit.260320112
18 https://doi.org/10.1002/ecm.1258
19 https://doi.org/10.1016/j.advwatres.2006.05.025
20 https://doi.org/10.1016/j.funeco.2011.03.005
21 https://doi.org/10.1016/j.soilbio.2004.06.010
22 https://doi.org/10.1016/j.soilbio.2008.07.002
23 https://doi.org/10.1016/j.soilbio.2011.05.018
24 https://doi.org/10.1016/s0038-0717(03)00015-4
25 https://doi.org/10.1029/2010jg001434
26 https://doi.org/10.1063/1.1699114
27 https://doi.org/10.1073/pnas.0400522101
28 https://doi.org/10.1093/biomet/57.1.97
29 https://doi.org/10.1111/ele.12113
30 https://doi.org/10.1111/ele.12254
31 https://doi.org/10.1111/gcb.12036
32 https://doi.org/10.1111/gcb.12112
33 https://doi.org/10.1111/gcb.12113
34 https://doi.org/10.1111/gcb.12718
35 https://doi.org/10.1111/gcb.12827
36 https://doi.org/10.1111/j.1365-2389.2006.00809.x
37 https://doi.org/10.1111/j.1365-2486.2011.02496.x
38 https://doi.org/10.1111/j.1365-2486.2011.02615.x
39 https://doi.org/10.1111/j.1461-0248.2008.01251.x
40 https://doi.org/10.1111/j.1461-0248.2012.01837.x
41 https://doi.org/10.1111/j.1469-8137.2012.04225.x
42 https://doi.org/10.1126/science.1061967
43 https://doi.org/10.1146/annurev.mi.24.100170.000313
44 https://doi.org/10.1371/journal.pmed.1000097
45 https://doi.org/10.1890/05-0383
46 https://doi.org/10.1890/12-0681.1
47 https://doi.org/10.4067/s0718-95162015005000055
48 https://doi.org/10.5194/bg-13-1733-2016
49 https://doi.org/10.5194/bg-8-477-2011
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description Soil microbial carbon-use efficiency (CUE), which is defined as the ratio of growth over C uptake, is commonly assumed as a constant or estimated by a temperature-dependent function in current microbial-explicit soil carbon (C) models. The temperature-dependent function (i.e., CUE = CUE<sub>0</sub> + m × (T - 20)) simulates the dynamic CUE based on the specific CUE at a given reference temperature (i.e., CUE<sub>0</sub>) and a temperature response coefficient (i.e., m). Here, based on 780 observations from 98 sites, we showed a divergent spatial distribution of the soil microbial CUE (0.5 ± 0.25; mean ± SD) at the global scale. Then, the key parameters CUE<sub>0</sub> and m in the above equation were estimated as 0.475 and -0.016, respectively, based on the observations with the Markov chain Monte Carlo technique. We also found a strong dependence of microbial CUE on the type of C substrate. The multiple regression analysis showed that glucose influences the variation of measured CUE associated with the environmental factors. Overall, this study confirms the global divergence of soil microbial CUE and calls for the incorporation of C substrate beside temperature in estimating the microbial CUE in different biomes.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N3149cfab31ea40c3aff4def7a94fe941
57 N67a18c1975584404975c3b86940e39db
58 sg:journal.1045337
59 schema:name Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply.
60 schema:pagination 5621
61 schema:productId N22dd966b42cb421390107c87ae7f15ef
62 N34ffabe6ccf7437fa2c7b517de341bc6
63 N8016052b1aae493b889bd872b1b382e4
64 N93838f58ec1444a8b16b2b34b81a2ca7
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113185005
66 https://doi.org/10.1038/s41598-019-42145-6
67 schema:sdDatePublished 2019-04-15T09:11
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nd45abbb740fb44b08387a701bb5d52b4
70 schema:url http://www.nature.com/articles/s41598-019-42145-6
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N001c533d5f2a4dbea119450133ed9972 rdf:first Nfcd77604ee744d7a8e1f9e380cb2b6b3
75 rdf:rest N4d6fcf17a7a84a4e8b99648670ddd774
76 N0b568093221f459c8f72e1e4d5327559 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
77 schema:familyName Luo
78 schema:givenName Yiqi
79 rdf:type schema:Person
80 N14028dbce56c482fa57bda60ea0377cc schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
81 schema:familyName Xia
82 schema:givenName Jianyang
83 rdf:type schema:Person
84 N1ab80ab4d12c4a9ea1f54d8af4976476 rdf:first Nacd7760febab44dfa6c41151d220cacb
85 rdf:rest N001c533d5f2a4dbea119450133ed9972
86 N22dd966b42cb421390107c87ae7f15ef schema:name dimensions_id
87 schema:value pub.1113185005
88 rdf:type schema:PropertyValue
89 N236aa3b0f945495b88a5eed3687bbb4b schema:affiliation https://www.grid.ac/institutes/grid.261120.6
90 schema:familyName Liang
91 schema:givenName Guopeng
92 rdf:type schema:Person
93 N3149cfab31ea40c3aff4def7a94fe941 schema:volumeNumber 9
94 rdf:type schema:PublicationVolume
95 N34ffabe6ccf7437fa2c7b517de341bc6 schema:name doi
96 schema:value 10.1038/s41598-019-42145-6
97 rdf:type schema:PropertyValue
98 N395f65ce321648ecbcf0f86f6b2e9ee0 rdf:first N0b568093221f459c8f72e1e4d5327559
99 rdf:rest N6ad1dc3ee45b4ede9336d91a737ff012
100 N40d7ee1f613a43fa820dc0b2e52300bd schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
101 schema:familyName Qiao
102 schema:givenName Yang
103 rdf:type schema:Person
104 N4176cbb959794d3db7a04b945eef11c7 rdf:first N99591990210c4fcfb976ee73a341b5c1
105 rdf:rest N5976a43d8cf740f8811ab1df2a50a8b4
106 N4d6fcf17a7a84a4e8b99648670ddd774 rdf:first Nb47e33652ec740f8a8a33e6188d13fc6
107 rdf:rest N395f65ce321648ecbcf0f86f6b2e9ee0
108 N5976a43d8cf740f8811ab1df2a50a8b4 rdf:first N236aa3b0f945495b88a5eed3687bbb4b
109 rdf:rest Ne3089ebdb4384f7ab2b275322caa964b
110 N67a18c1975584404975c3b86940e39db schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N6ad1dc3ee45b4ede9336d91a737ff012 rdf:first Nebabdcb109714ea88e727df20c3fab72
113 rdf:rest Nad0e9f01d8304724ba5e90620eccbdcc
114 N8016052b1aae493b889bd872b1b382e4 schema:name pubmed_id
115 schema:value 30948759
116 rdf:type schema:PropertyValue
117 N93838f58ec1444a8b16b2b34b81a2ca7 schema:name nlm_unique_id
118 schema:value 101563288
119 rdf:type schema:PropertyValue
120 N99591990210c4fcfb976ee73a341b5c1 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
121 schema:familyName Wang
122 schema:givenName Jing
123 rdf:type schema:Person
124 Nacd7760febab44dfa6c41151d220cacb schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
125 schema:familyName Zhu
126 schema:givenName Chen
127 rdf:type schema:Person
128 Nad0e9f01d8304724ba5e90620eccbdcc rdf:first N14028dbce56c482fa57bda60ea0377cc
129 rdf:rest rdf:nil
130 Nb47e33652ec740f8a8a33e6188d13fc6 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
131 schema:familyName Zhou
132 schema:givenName Xuhui
133 rdf:type schema:Person
134 Nb6295b7ada01462d8517d0b85a35653a schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
135 schema:familyName Zhou
136 schema:givenName Jian
137 rdf:type schema:Person
138 Nc64935b5b29e41e5bff9904b9311ba20 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
139 schema:familyName Du
140 schema:givenName Zhenggang
141 rdf:type schema:Person
142 Nd45abbb740fb44b08387a701bb5d52b4 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nd97ee18b438e412d8c571faef58171f7 rdf:first N40d7ee1f613a43fa820dc0b2e52300bd
145 rdf:rest N4176cbb959794d3db7a04b945eef11c7
146 Ne3089ebdb4384f7ab2b275322caa964b rdf:first Nc64935b5b29e41e5bff9904b9311ba20
147 rdf:rest Nece68e9ef11148969d89df6d28f07090
148 Nebabdcb109714ea88e727df20c3fab72 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
149 schema:familyName Yan
150 schema:givenName Liming
151 rdf:type schema:Person
152 Nece68e9ef11148969d89df6d28f07090 rdf:first Nb6295b7ada01462d8517d0b85a35653a
153 rdf:rest N1ab80ab4d12c4a9ea1f54d8af4976476
154 Nfcd77604ee744d7a8e1f9e380cb2b6b3 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
155 schema:familyName Huang
156 schema:givenName Kun
157 rdf:type schema:Person
158 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
159 schema:name Environmental Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
162 schema:name Soil Sciences
163 rdf:type schema:DefinedTerm
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 rdf:type schema:Periodical
167 sg:pub.10.1007/bf00336164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012752812
168 https://doi.org/10.1007/bf00336164
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s10533-013-9948-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012260319
171 https://doi.org/10.1007/s10533-013-9948-8
172 rdf:type schema:CreativeWork
173 sg:pub.10.1023/a:1010693614196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006141238
174 https://doi.org/10.1023/a:1010693614196
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nclimate1796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016572706
177 https://doi.org/10.1038/nclimate1796
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nclimate1951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043331772
180 https://doi.org/10.1038/nclimate1951
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nclimate2436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039662894
183 https://doi.org/10.1038/nclimate2436
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ngeo2093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050821463
186 https://doi.org/10.1038/ngeo2093
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ngeo846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008043941
189 https://doi.org/10.1038/ngeo846
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/srep15783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008943245
192 https://doi.org/10.1038/srep15783
193 rdf:type schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1082126106 schema:CreativeWork
195 https://doi.org/10.1001/jama.283.15.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023723086
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/2015gb005188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029565836
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/bit.260221202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008477557
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/bit.260320112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002750851
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/ecm.1258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084011358
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.advwatres.2006.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003302608
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.funeco.2011.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037627376
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.soilbio.2004.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018097172
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.soilbio.2008.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032392992
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.soilbio.2011.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023831266
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0038-0717(03)00015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027099910
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1029/2010jg001434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007454311
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0400522101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026323922
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/ele.12113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001774340
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/ele.12254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004582926
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/gcb.12036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036681072
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/gcb.12112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009188441
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/gcb.12113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011143071
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/gcb.12718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027735181
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1111/gcb.12827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016354786
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1111/j.1365-2389.2006.00809.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043854437
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1111/j.1365-2486.2011.02496.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024029703
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1111/j.1365-2486.2011.02615.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050950853
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1111/j.1461-0248.2008.01251.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021738617
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1111/j.1461-0248.2012.01837.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039999206
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/j.1469-8137.2012.04225.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021933047
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/science.1061967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014138864
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1146/annurev.mi.24.100170.000313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012662668
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pmed.1000097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037575666
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1890/05-0383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006560529
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1890/12-0681.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004991346
260 rdf:type schema:CreativeWork
261 https://doi.org/10.4067/s0718-95162015005000055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103398524
262 rdf:type schema:CreativeWork
263 https://doi.org/10.5194/bg-13-1733-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072662170
264 rdf:type schema:CreativeWork
265 https://doi.org/10.5194/bg-8-477-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017617079
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.22069.3f schema:alternateName East China Normal University
268 schema:name Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China.
269 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. jyxia@des.ecnu.edu.cn.
270 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China. lmyan@des.ecnu.edu.cn.
271 rdf:type schema:Organization
272 https://www.grid.ac/institutes/grid.261120.6 schema:alternateName Northern Arizona University
273 schema:name Center for Ecosystem Science and Society, Northern Arizona University, Arizona, Flagstaff, AZ, 86011, USA.
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...