Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Hongchang Gu, Xin Qi, Yaxiong Jia, Zebin Zhang, Changsheng Nie, Xinghua Li, Junying Li, Zhihua Jiang, Qiong Wang, Lujiang Qu

ABSTRACT

Although many phenotypic traits of chickens have been well documented, the genetic patterns of gene expression levels in chickens remain to be determined. In the present study, we crossed two chicken breeds, White Leghorn (WL) and Cornish (Cor), which have been selected for egg and meat production, respectively, for a few hundred years. We evaluated transcriptome abundance in the brain, muscle, and liver from the day-old progenies of pure-bred WL and Cor, and the hybrids of these two breeds, by RNA-Seq in order to determine the inheritance patterns of gene expression. Comparison among expression levels in the different groups revealed that most of the genes showed conserved expression patterns in all three examined tissues and that brain had the highest number of conserved genes, which indicates that conserved genes are predominantly important compared to others. On the basis of allelic expression analysis, in addition to the conserved genes, we identified the extensive presence of additive, dominant (Cor dominant and WL dominant), over-dominant, and under-dominant genes in all three tissues in hybrids. Our study is the first to provide an overview of inheritance patterns of the transcriptome in layers and broilers, and we also provide insights into the genetics of chickens at the gene expression level. More... »

PAGES

5750

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-42019-x

DOI

http://dx.doi.org/10.1038/s41598-019-42019-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113300701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30962479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Hongchang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Xin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Yaxiong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zebin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nie", 
        "givenName": "Changsheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xinghua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Junying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Department of Animal Sciences, Center for Reproductive Biology, Veterinary and Biomedical Research Building, Washington State University, Pullman, United States."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Zhihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Fishery Sciences", 
          "id": "https://www.grid.ac/institutes/grid.43308.3c", 
          "name": [
            "Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China. wangqiong@ysfri.ac.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qiong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China. quluj@163.com."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "Lujiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1104/pp.107.101428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000243928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-003-0919-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005120471", 
          "https://doi.org/10.1007/s00438-003-0919-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.026583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006194305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.026583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006194305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2007.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012220976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016247401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017047723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017047723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017047723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evt072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017129624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0805160105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017243326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020249428", 
          "https://doi.org/10.1038/nrg2934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-016-0422-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020546636", 
          "https://doi.org/10.1186/s12863-016-0422-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-016-0422-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020546636", 
          "https://doi.org/10.1186/s12863-016-0422-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-16-s13-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025035947", 
          "https://doi.org/10.1186/1471-2105-16-s13-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-16-s13-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025035947", 
          "https://doi.org/10.1186/1471-2105-16-s13-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.027995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027133576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.027995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027133576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027690346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6981507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027989758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.102491.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029731597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evv057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036891129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.047449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038569902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.047449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038569902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040162146", 
          "https://doi.org/10.1038/nature02698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040162146", 
          "https://doi.org/10.1038/nature02698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040623090", 
          "https://doi.org/10.1038/ng.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.079558.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045837493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep40618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046905316", 
          "https://doi.org/10.1038/srep40618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.160119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046929983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.160119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046929983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2009.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048516421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1169766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050794714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1169766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050794714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1190830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1190830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evx031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083880542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-12179-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091790181", 
          "https://doi.org/10.1038/s41598-017-12179-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.16288/j.yczz.17-111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100446629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes10010027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111251255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes10010027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111251255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes10010027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111251255"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Although many phenotypic traits of chickens have been well documented, the genetic patterns of gene expression levels in chickens remain to be determined. In the present study, we crossed two chicken breeds, White Leghorn (WL) and Cornish (Cor), which have been selected for egg and meat production, respectively, for a few hundred years. We evaluated transcriptome abundance in the brain, muscle, and liver from the day-old progenies of pure-bred WL and Cor, and the hybrids of these two breeds, by RNA-Seq in order to determine the inheritance patterns of gene expression. Comparison among expression levels in the different groups revealed that most of the genes showed conserved expression patterns in all three examined tissues and that brain had the highest number of conserved genes, which indicates that conserved genes are predominantly important compared to others. On the basis of allelic expression analysis, in addition to the conserved genes, we identified the extensive presence of additive, dominant (Cor dominant and WL dominant), over-dominant, and under-dominant genes in all three tissues in hybrids. Our study is the first to provide an overview of inheritance patterns of the transcriptome in layers and broilers, and we also provide insights into the genetics of chickens at the gene expression level.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-42019-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis.", 
    "pagination": "5750", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-42019-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113300701"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30962479"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-42019-x", 
      "https://app.dimensions.ai/details/publication/pub.1113300701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106822_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41598-019-42019-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42019-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42019-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42019-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42019-x'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      67 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-42019-x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N31303f5378194930899e6ceb7729ef83
4 schema:citation sg:pub.10.1007/s00438-003-0919-y
5 sg:pub.10.1038/nature02698
6 sg:pub.10.1038/ng.77
7 sg:pub.10.1038/nmeth.1226
8 sg:pub.10.1038/nprot.2008.211
9 sg:pub.10.1038/nrg2934
10 sg:pub.10.1038/s41598-017-12179-9
11 sg:pub.10.1038/srep40618
12 sg:pub.10.1186/1471-2105-16-s13-s10
13 sg:pub.10.1186/s12863-016-0422-1
14 https://doi.org/10.1016/j.tplants.2007.08.005
15 https://doi.org/10.1016/j.tplants.2009.12.003
16 https://doi.org/10.1073/pnas.0805160105
17 https://doi.org/10.1093/bioinformatics/btm453
18 https://doi.org/10.1093/bioinformatics/btp352
19 https://doi.org/10.1093/bioinformatics/btp616
20 https://doi.org/10.1093/bioinformatics/btp698
21 https://doi.org/10.1093/bioinformatics/btr330
22 https://doi.org/10.1093/bioinformatics/bts635
23 https://doi.org/10.1093/bioinformatics/btt656
24 https://doi.org/10.1093/gbe/evt072
25 https://doi.org/10.1093/gbe/evv057
26 https://doi.org/10.1093/gbe/evx031
27 https://doi.org/10.1101/gr.079558.108
28 https://doi.org/10.1101/gr.102491.109
29 https://doi.org/10.1101/gr.107524.110
30 https://doi.org/10.1101/gr.6981507
31 https://doi.org/10.1104/pp.107.101428
32 https://doi.org/10.1126/science.1169766
33 https://doi.org/10.1126/science.1190830
34 https://doi.org/10.1371/journal.pgen.1002600
35 https://doi.org/10.1371/journal.pgen.1003183
36 https://doi.org/10.1371/journal.pone.0149010
37 https://doi.org/10.1534/genetics.104.026583
38 https://doi.org/10.1534/genetics.104.027995
39 https://doi.org/10.1534/genetics.105.047449
40 https://doi.org/10.1534/genetics.113.160119
41 https://doi.org/10.16288/j.yczz.17-111
42 https://doi.org/10.3390/genes10010027
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description Although many phenotypic traits of chickens have been well documented, the genetic patterns of gene expression levels in chickens remain to be determined. In the present study, we crossed two chicken breeds, White Leghorn (WL) and Cornish (Cor), which have been selected for egg and meat production, respectively, for a few hundred years. We evaluated transcriptome abundance in the brain, muscle, and liver from the day-old progenies of pure-bred WL and Cor, and the hybrids of these two breeds, by RNA-Seq in order to determine the inheritance patterns of gene expression. Comparison among expression levels in the different groups revealed that most of the genes showed conserved expression patterns in all three examined tissues and that brain had the highest number of conserved genes, which indicates that conserved genes are predominantly important compared to others. On the basis of allelic expression analysis, in addition to the conserved genes, we identified the extensive presence of additive, dominant (Cor dominant and WL dominant), over-dominant, and under-dominant genes in all three tissues in hybrids. Our study is the first to provide an overview of inheritance patterns of the transcriptome in layers and broilers, and we also provide insights into the genetics of chickens at the gene expression level.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N279e60502e804b56a97c8d70055d1ec1
50 Nd3b8c328eba14777940d77cfe2c7a45a
51 sg:journal.1045337
52 schema:name Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis.
53 schema:pagination 5750
54 schema:productId N12ba7bd635c54137a12338098b24dd1f
55 N21c25f2670c04487996289ddbc9dce07
56 N4a3bb49ce1574f33b0a3b8290984207a
57 Nce302221618942ae97e45fef169abc63
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300701
59 https://doi.org/10.1038/s41598-019-42019-x
60 schema:sdDatePublished 2019-04-16T06:23
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nc427d06cccd042e4b4a94e7f0052aba9
63 schema:url http://www.nature.com/articles/s41598-019-42019-x
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N009fe9e6a8d94c77b091f222ccb966f0 schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
68 schema:familyName Nie
69 schema:givenName Changsheng
70 rdf:type schema:Person
71 N1219fbab6c4c419bb80fe5df045dba15 rdf:first N5cf7527083e540008cd32a2633018863
72 rdf:rest N888809c9bb09413ea8a118217ebb1938
73 N12ba7bd635c54137a12338098b24dd1f schema:name dimensions_id
74 schema:value pub.1113300701
75 rdf:type schema:PropertyValue
76 N16a7677bbc8f49acaea74dadba507212 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
77 schema:familyName Jiang
78 schema:givenName Zhihua
79 rdf:type schema:Person
80 N21c25f2670c04487996289ddbc9dce07 schema:name nlm_unique_id
81 schema:value 101563288
82 rdf:type schema:PropertyValue
83 N25c5ec4a0b6a4a50ac1cde351294ed71 schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
84 schema:familyName Qu
85 schema:givenName Lujiang
86 rdf:type schema:Person
87 N279e60502e804b56a97c8d70055d1ec1 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N31303f5378194930899e6ceb7729ef83 rdf:first Na06c2d27abe14e64bc865952241b48c7
90 rdf:rest Nbe0ecf76e5da40e58b28b2762ed5a50a
91 N4a3bb49ce1574f33b0a3b8290984207a schema:name pubmed_id
92 schema:value 30962479
93 rdf:type schema:PropertyValue
94 N4be8a68399ec4624b596514f086b1f61 rdf:first Ne1e53655100f489db14ae2d191e88dcc
95 rdf:rest N4f37e37ce84c4f698bd4cadaf371e3c5
96 N4f37e37ce84c4f698bd4cadaf371e3c5 rdf:first N25c5ec4a0b6a4a50ac1cde351294ed71
97 rdf:rest rdf:nil
98 N5cf7527083e540008cd32a2633018863 schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
99 schema:familyName Li
100 schema:givenName Junying
101 rdf:type schema:Person
102 N7bb6d93a1cca4d6b9bdd5f5243a87afb rdf:first Ndb9bdc9330524083a59db5b6282985ce
103 rdf:rest N8403bb7f7f5c4a3090fa1baaa35fcaa0
104 N7cbc5888677049c995b1f77672da4225 rdf:first N009fe9e6a8d94c77b091f222ccb966f0
105 rdf:rest Nf12cf2fe42c84a94929e565ca0d0b2a9
106 N8403bb7f7f5c4a3090fa1baaa35fcaa0 rdf:first N91042da0cbd948859887a3a11dd58e9f
107 rdf:rest N7cbc5888677049c995b1f77672da4225
108 N88323e2793ff4773b6653dcebdbc747a schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
109 schema:familyName Qi
110 schema:givenName Xin
111 rdf:type schema:Person
112 N888809c9bb09413ea8a118217ebb1938 rdf:first N16a7677bbc8f49acaea74dadba507212
113 rdf:rest N4be8a68399ec4624b596514f086b1f61
114 N91042da0cbd948859887a3a11dd58e9f schema:affiliation https://www.grid.ac/institutes/grid.10548.38
115 schema:familyName Zhang
116 schema:givenName Zebin
117 rdf:type schema:Person
118 Na06c2d27abe14e64bc865952241b48c7 schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
119 schema:familyName Gu
120 schema:givenName Hongchang
121 rdf:type schema:Person
122 Nbe0ecf76e5da40e58b28b2762ed5a50a rdf:first N88323e2793ff4773b6653dcebdbc747a
123 rdf:rest N7bb6d93a1cca4d6b9bdd5f5243a87afb
124 Nc427d06cccd042e4b4a94e7f0052aba9 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Ncca680b8b79e499f86c57abfdfd72ccd schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
127 schema:familyName Li
128 schema:givenName Xinghua
129 rdf:type schema:Person
130 Nce302221618942ae97e45fef169abc63 schema:name doi
131 schema:value 10.1038/s41598-019-42019-x
132 rdf:type schema:PropertyValue
133 Nd3b8c328eba14777940d77cfe2c7a45a schema:volumeNumber 9
134 rdf:type schema:PublicationVolume
135 Ndb9bdc9330524083a59db5b6282985ce schema:affiliation https://www.grid.ac/institutes/grid.464332.4
136 schema:familyName Jia
137 schema:givenName Yaxiong
138 rdf:type schema:Person
139 Ne1e53655100f489db14ae2d191e88dcc schema:affiliation https://www.grid.ac/institutes/grid.43308.3c
140 schema:familyName Wang
141 schema:givenName Qiong
142 rdf:type schema:Person
143 Nf12cf2fe42c84a94929e565ca0d0b2a9 rdf:first Ncca680b8b79e499f86c57abfdfd72ccd
144 rdf:rest N1219fbab6c4c419bb80fe5df045dba15
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
149 schema:name Genetics
150 rdf:type schema:DefinedTerm
151 sg:journal.1045337 schema:issn 2045-2322
152 schema:name Scientific Reports
153 rdf:type schema:Periodical
154 sg:pub.10.1007/s00438-003-0919-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005120471
155 https://doi.org/10.1007/s00438-003-0919-y
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature02698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040162146
158 https://doi.org/10.1038/nature02698
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ng.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040623090
161 https://doi.org/10.1038/ng.77
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
164 https://doi.org/10.1038/nmeth.1226
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
167 https://doi.org/10.1038/nprot.2008.211
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nrg2934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020249428
170 https://doi.org/10.1038/nrg2934
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/s41598-017-12179-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091790181
173 https://doi.org/10.1038/s41598-017-12179-9
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/srep40618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046905316
176 https://doi.org/10.1038/srep40618
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2105-16-s13-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025035947
179 https://doi.org/10.1186/1471-2105-16-s13-s10
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/s12863-016-0422-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020546636
182 https://doi.org/10.1186/s12863-016-0422-1
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.tplants.2007.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012220976
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.tplants.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048516421
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.0805160105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017243326
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/bioinformatics/btm453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891129
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btt656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016247401
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/gbe/evt072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017129624
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/gbe/evv057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030446070
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/gbe/evx031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083880542
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1101/gr.102491.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029731597
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1101/gr.6981507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027989758
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1104/pp.107.101428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243928
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.1169766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050794714
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.1190830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462476
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pgen.1002600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013153207
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pgen.1003183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027690346
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pone.0149010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017047723
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1534/genetics.104.026583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006194305
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1534/genetics.104.027995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027133576
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1534/genetics.105.047449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038569902
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1534/genetics.113.160119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046929983
237 rdf:type schema:CreativeWork
238 https://doi.org/10.16288/j.yczz.17-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100446629
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3390/genes10010027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111251255
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
243 schema:name Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden.
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.22935.3f schema:alternateName China Agricultural University
246 schema:name Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
247 Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China. quluj@163.com.
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
250 schema:name Department of Animal Sciences, Center for Reproductive Biology, Veterinary and Biomedical Research Building, Washington State University, Pullman, United States.
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.43308.3c schema:alternateName Chinese Academy of Fishery Sciences
253 schema:name Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China. wangqiong@ysfri.ac.cn.
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.464332.4 schema:alternateName Institute of Animal Sciences
256 schema:name Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...