High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yuri Belotti, Serenella Tolomeo, Michael J Conneely, Tianjun Huang, Stephen J McKenna, Ghulam Nabi, David McGloin

ABSTRACT

Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices. More... »

PAGES

5742

References to SciGraph publications

  • 2008-04. An historical perspective on cell mechanics in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 2015-12-15. Screening: Diagnostic dilemma in NATURE
  • 2004-03. Gleason grading and prognostic factors in carcinoma of the prostate in MODERN PATHOLOGY
  • 2007-12. Nanomechanical analysis of cells from cancer patients in NATURE NANOTECHNOLOGY
  • 2015-12-15. Microbiology: Inflammatory evidence in NATURE
  • 2013-10. Misclassification errors in prevalence estimation: Bayesian handling with care in INTERNATIONAL JOURNAL OF PUBLIC HEALTH
  • 2016-10. Mechanical plasticity of cells in NATURE MATERIALS
  • 2015-12-16. Prostate cancer in NATURE
  • 2015-03. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping in NATURE METHODS
  • 2010-06. Influence of power-law rheology on cell injury during microbubble flows in BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
  • Journal

    TITLE

    Scientific Reports

    ISSUE

    1

    VOLUME

    9

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-42008-0

    DOI

    http://dx.doi.org/10.1038/s41598-019-42008-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113261540

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30952895


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee, SUPA, School of Science and Engineering, Dundee, Scotland, UK. y.z.belotti@dundee.ac.uk."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belotti", 
            "givenName": "Yuri", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee, School of Medicine, Dundee, Scotland, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tolomeo", 
            "givenName": "Serenella", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee, School of Life Sciences, Dundee, Scotland, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Conneely", 
            "givenName": "Michael J", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee, SUPA, School of Science and Engineering, Dundee, Scotland, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Tianjun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee, SUPA, School of Science and Engineering, Dundee, Scotland, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "McKenna", 
            "givenName": "Stephen J", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Dundee", 
              "id": "https://www.grid.ac/institutes/grid.8241.f", 
              "name": [
                "University of Dundee, School of Medicine, Dundee, Scotland, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nabi", 
            "givenName": "Ghulam", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Technology Sydney", 
              "id": "https://www.grid.ac/institutes/grid.117476.2", 
              "name": [
                "University of Dundee, SUPA, School of Science and Engineering, Dundee, Scotland, UK. david.mcgloin@uts.edu.au.", 
                "University of Technology Sydney, School of Electrical and Data Engineering, Sydney, Australia. david.mcgloin@uts.edu.au."
              ], 
              "type": "Organization"
            }, 
            "familyName": "McGloin", 
            "givenName": "David", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2007.388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001285727", 
              "https://doi.org/10.1038/nnano.2007.388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/528s120a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006262663", 
              "https://doi.org/10.1038/528s120a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/hupa.2001.21134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006304783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bb.17.060188.002145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006885261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007894491", 
              "https://doi.org/10.1038/nmat4689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4sm00788c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009342982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b803355b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011646965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3322/caac.21254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011682275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0045237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012124215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/528s117a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014162645", 
              "https://doi.org/10.1038/528s117a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.puhe.2016.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014653963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.20.19.7160-7169.2000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015997654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0702576104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018291693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4lc01218f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018905304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4lc00128a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019480785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bpj.2015.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022398682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5347(01)64517-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024178465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(92)90163-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024551498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/2211068211431630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025614992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/2211068211431630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025614992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-matsci-062910-100351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025952799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026034813", 
              "https://doi.org/10.1038/nmeth.3281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.3800054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027726502", 
              "https://doi.org/10.1038/modpathol.3800054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.3800054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027726502", 
              "https://doi.org/10.1038/modpathol.3800054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m503111200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028420721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m503111200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028420721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.045476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028462032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2976/1.2895661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030180004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actbio.2005.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031506937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3lc50649e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035227038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0704958104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039012474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bpj.2015.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040803509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00038-012-0439-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041978594", 
              "https://doi.org/10.1007/s00038-012-0439-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-08-4073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042190275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.juro.2010.10.079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042701511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/528s130a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044573093", 
              "https://doi.org/10.1038/528s130a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10237-009-0175-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045700937", 
              "https://doi.org/10.1007/s10237-009-0175-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10237-009-0175-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045700937", 
              "https://doi.org/10.1007/s10237-009-0175-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10237-009-0175-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045700937", 
              "https://doi.org/10.1007/s10237-009-0175-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10237-009-0175-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045700937", 
              "https://doi.org/10.1007/s10237-009-0175-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00424-007-0405-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046561579", 
              "https://doi.org/10.1007/s00424-007-0405-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00424-007-0405-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046561579", 
              "https://doi.org/10.1007/s00424-007-0405-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1200107109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047090690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/jfm.2015.678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053918385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/jfm.2015.678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053918385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.098103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060830008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.098103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060830008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.3007731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062688189"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-42008-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3497825", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells.", 
        "pagination": "5742", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-42008-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113261540"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30952895"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-42008-0", 
          "https://app.dimensions.ai/details/publication/pub.1113261540"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56190_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/s41598-019-42008-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42008-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42008-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42008-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-42008-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      21 PREDICATES      67 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-42008-0 schema:about anzsrc-for:09
    2 anzsrc-for:0903
    3 schema:author N61223169be2847fdaf06e54367eba89c
    4 schema:citation sg:pub.10.1007/s00038-012-0439-9
    5 sg:pub.10.1007/s00424-007-0405-1
    6 sg:pub.10.1007/s10237-009-0175-0
    7 sg:pub.10.1038/528s117a
    8 sg:pub.10.1038/528s120a
    9 sg:pub.10.1038/528s130a
    10 sg:pub.10.1038/modpathol.3800054
    11 sg:pub.10.1038/nmat4689
    12 sg:pub.10.1038/nmeth.3281
    13 sg:pub.10.1038/nnano.2007.388
    14 https://doi.org/10.1016/0092-8674(92)90163-7
    15 https://doi.org/10.1016/j.actbio.2005.02.010
    16 https://doi.org/10.1016/j.bpj.2015.05.029
    17 https://doi.org/10.1016/j.bpj.2015.09.006
    18 https://doi.org/10.1016/j.juro.2010.10.079
    19 https://doi.org/10.1016/j.puhe.2016.10.006
    20 https://doi.org/10.1016/s0022-5347(01)64517-8
    21 https://doi.org/10.1017/jfm.2015.678
    22 https://doi.org/10.1039/b803355b
    23 https://doi.org/10.1039/c3lc50649e
    24 https://doi.org/10.1039/c4lc00128a
    25 https://doi.org/10.1039/c4lc01218f
    26 https://doi.org/10.1039/c4sm00788c
    27 https://doi.org/10.1053/hupa.2001.21134
    28 https://doi.org/10.1073/pnas.0702576104
    29 https://doi.org/10.1073/pnas.0704958104
    30 https://doi.org/10.1073/pnas.1200107109
    31 https://doi.org/10.1074/jbc.m503111200
    32 https://doi.org/10.1103/physrevlett.94.098103
    33 https://doi.org/10.1126/scitranslmed.3007731
    34 https://doi.org/10.1128/mcb.20.19.7160-7169.2000
    35 https://doi.org/10.1146/annurev-matsci-062910-100351
    36 https://doi.org/10.1146/annurev.bb.17.060188.002145
    37 https://doi.org/10.1158/0008-5472.can-08-4073
    38 https://doi.org/10.1177/2211068211431630
    39 https://doi.org/10.1371/journal.pone.0045237
    40 https://doi.org/10.1529/biophysj.104.045476
    41 https://doi.org/10.2976/1.2895661
    42 https://doi.org/10.3322/caac.21254
    43 schema:datePublished 2019-12
    44 schema:datePublishedReg 2019-12-01
    45 schema:description Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree true
    49 schema:isPartOf N64406623534e438d970d54d2524c5df2
    50 Nd123078639c841fcb685ee45be2aa25e
    51 sg:journal.1045337
    52 schema:name High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells.
    53 schema:pagination 5742
    54 schema:productId N8e3f9842afb3428cb69a438dc0f0c0fc
    55 Nac78362be14d4d8d8d8f53cd756cdb73
    56 Nb11795d78ccb4d439f6e193b80108c5e
    57 Ne63825d95ba04b44ac404220c42d9353
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261540
    59 https://doi.org/10.1038/s41598-019-42008-0
    60 schema:sdDatePublished 2019-04-15T09:24
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N911382f86f1b45c688593f73f1e9a8e8
    63 schema:url http://www.nature.com/articles/s41598-019-42008-0
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N04be015339954f818812782f806afa20 rdf:first N06d782efff54409b9884113d3ba05d71
    68 rdf:rest N78d96dc196774796aa897e1e22d5f4e7
    69 N06d782efff54409b9884113d3ba05d71 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    70 schema:familyName Huang
    71 schema:givenName Tianjun
    72 rdf:type schema:Person
    73 N0b63ab37155b483a921f304796931535 rdf:first Na6d5d29507744579b23fbc80591a96f6
    74 rdf:rest N690dceaf5e224804b7164ea61c3dcb91
    75 N2e235d1d4b874a54be45e05066028549 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    76 schema:familyName Belotti
    77 schema:givenName Yuri
    78 rdf:type schema:Person
    79 N3f99f3457c554c0386ce88fa0f8aa16c schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    80 schema:familyName Nabi
    81 schema:givenName Ghulam
    82 rdf:type schema:Person
    83 N61223169be2847fdaf06e54367eba89c rdf:first N2e235d1d4b874a54be45e05066028549
    84 rdf:rest N0b63ab37155b483a921f304796931535
    85 N64406623534e438d970d54d2524c5df2 schema:issueNumber 1
    86 rdf:type schema:PublicationIssue
    87 N690dceaf5e224804b7164ea61c3dcb91 rdf:first Ne6d60a01641744e691c0889d43ceeef8
    88 rdf:rest N04be015339954f818812782f806afa20
    89 N78d96dc196774796aa897e1e22d5f4e7 rdf:first N7aaff9b410854574b0dda8f09f965ce7
    90 rdf:rest N9a6a2d098b8d4cde981777b775ef7177
    91 N7aaff9b410854574b0dda8f09f965ce7 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    92 schema:familyName McKenna
    93 schema:givenName Stephen J
    94 rdf:type schema:Person
    95 N88b001d3dbe24aefac3ed90a724cb62c schema:affiliation https://www.grid.ac/institutes/grid.117476.2
    96 schema:familyName McGloin
    97 schema:givenName David
    98 rdf:type schema:Person
    99 N8af87692fde943d68d52c6478736d8c3 rdf:first N88b001d3dbe24aefac3ed90a724cb62c
    100 rdf:rest rdf:nil
    101 N8e3f9842afb3428cb69a438dc0f0c0fc schema:name dimensions_id
    102 schema:value pub.1113261540
    103 rdf:type schema:PropertyValue
    104 N911382f86f1b45c688593f73f1e9a8e8 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N9a6a2d098b8d4cde981777b775ef7177 rdf:first N3f99f3457c554c0386ce88fa0f8aa16c
    107 rdf:rest N8af87692fde943d68d52c6478736d8c3
    108 Na6d5d29507744579b23fbc80591a96f6 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    109 schema:familyName Tolomeo
    110 schema:givenName Serenella
    111 rdf:type schema:Person
    112 Nac78362be14d4d8d8d8f53cd756cdb73 schema:name nlm_unique_id
    113 schema:value 101563288
    114 rdf:type schema:PropertyValue
    115 Nb11795d78ccb4d439f6e193b80108c5e schema:name doi
    116 schema:value 10.1038/s41598-019-42008-0
    117 rdf:type schema:PropertyValue
    118 Nd123078639c841fcb685ee45be2aa25e schema:volumeNumber 9
    119 rdf:type schema:PublicationVolume
    120 Ne63825d95ba04b44ac404220c42d9353 schema:name pubmed_id
    121 schema:value 30952895
    122 rdf:type schema:PropertyValue
    123 Ne6d60a01641744e691c0889d43ceeef8 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
    124 schema:familyName Conneely
    125 schema:givenName Michael J
    126 rdf:type schema:Person
    127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Engineering
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Biomedical Engineering
    132 rdf:type schema:DefinedTerm
    133 sg:grant.3497825 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-42008-0
    134 rdf:type schema:MonetaryGrant
    135 sg:journal.1045337 schema:issn 2045-2322
    136 schema:name Scientific Reports
    137 rdf:type schema:Periodical
    138 sg:pub.10.1007/s00038-012-0439-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041978594
    139 https://doi.org/10.1007/s00038-012-0439-9
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s00424-007-0405-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046561579
    142 https://doi.org/10.1007/s00424-007-0405-1
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s10237-009-0175-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045700937
    145 https://doi.org/10.1007/s10237-009-0175-0
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/528s117a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014162645
    148 https://doi.org/10.1038/528s117a
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/528s120a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006262663
    151 https://doi.org/10.1038/528s120a
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/528s130a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044573093
    154 https://doi.org/10.1038/528s130a
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/modpathol.3800054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027726502
    157 https://doi.org/10.1038/modpathol.3800054
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nmat4689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007894491
    160 https://doi.org/10.1038/nmat4689
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nmeth.3281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026034813
    163 https://doi.org/10.1038/nmeth.3281
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nnano.2007.388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001285727
    166 https://doi.org/10.1038/nnano.2007.388
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/0092-8674(92)90163-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024551498
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.actbio.2005.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506937
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.bpj.2015.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040803509
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.bpj.2015.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022398682
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.juro.2010.10.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042701511
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.puhe.2016.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653963
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0022-5347(01)64517-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024178465
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1017/jfm.2015.678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053918385
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1039/b803355b schema:sameAs https://app.dimensions.ai/details/publication/pub.1011646965
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1039/c3lc50649e schema:sameAs https://app.dimensions.ai/details/publication/pub.1035227038
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1039/c4lc00128a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019480785
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1039/c4lc01218f schema:sameAs https://app.dimensions.ai/details/publication/pub.1018905304
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1039/c4sm00788c schema:sameAs https://app.dimensions.ai/details/publication/pub.1009342982
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1053/hupa.2001.21134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006304783
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1073/pnas.0702576104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018291693
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1073/pnas.0704958104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039012474
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1073/pnas.1200107109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047090690
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1074/jbc.m503111200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028420721
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1103/physrevlett.94.098103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830008
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1126/scitranslmed.3007731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062688189
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1128/mcb.20.19.7160-7169.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015997654
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1146/annurev-matsci-062910-100351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025952799
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1146/annurev.bb.17.060188.002145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006885261
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1158/0008-5472.can-08-4073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042190275
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1177/2211068211431630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025614992
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1371/journal.pone.0045237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012124215
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1529/biophysj.104.045476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028462032
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.2976/1.2895661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030180004
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.3322/caac.21254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011682275
    225 rdf:type schema:CreativeWork
    226 https://www.grid.ac/institutes/grid.117476.2 schema:alternateName University of Technology Sydney
    227 schema:name University of Dundee, SUPA, School of Science and Engineering, Dundee, Scotland, UK. david.mcgloin@uts.edu.au.
    228 University of Technology Sydney, School of Electrical and Data Engineering, Sydney, Australia. david.mcgloin@uts.edu.au.
    229 rdf:type schema:Organization
    230 https://www.grid.ac/institutes/grid.8241.f schema:alternateName University of Dundee
    231 schema:name University of Dundee, SUPA, School of Science and Engineering, Dundee, Scotland, UK.
    232 University of Dundee, SUPA, School of Science and Engineering, Dundee, Scotland, UK. y.z.belotti@dundee.ac.uk.
    233 University of Dundee, School of Life Sciences, Dundee, Scotland, UK.
    234 University of Dundee, School of Medicine, Dundee, Scotland, UK.
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...