Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yuri Sakihama, Ryota Hidese, Tomohisa Hasunuma, Akihiko Kondo

ABSTRACT

Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts. More... »

PAGES

5319

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41863-1

DOI

http://dx.doi.org/10.1038/s41598-019-41863-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113056151

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30926897


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kobe University", 
          "id": "https://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakihama", 
        "givenName": "Yuri", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kobe University", 
          "id": "https://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hidese", 
        "givenName": "Ryota", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kobe University", 
          "id": "https://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasunuma", 
        "givenName": "Tomohisa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan", 
            "RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, 230-0045, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "Akihiko", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.biortech.2014.10.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010983973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011020047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011020047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/ert134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016361854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-011-3218-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019236594", 
          "https://doi.org/10.1007/s00253-011-3218-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-10-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019973852", 
          "https://doi.org/10.1186/1475-2859-10-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10_2016_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025069239", 
          "https://doi.org/10.1007/10_2016_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(76)90527-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025529346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-010-2784-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025852089", 
          "https://doi.org/10.1007/s00253-010-2784-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2007.05645.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028221364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2007.05645.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028221364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2007.05645.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028221364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.00389-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029420198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(199805)14:7<647::aid-yea269>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030614800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(199805)14:7<647::aid-yea269>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030614800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031549654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031549654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2012.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032661878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1458-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034874229", 
          "https://doi.org/10.1007/s00253-008-1458-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1458-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034874229", 
          "https://doi.org/10.1007/s00253-008-1458-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erp374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035392396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01854-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037397294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msq184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038962427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00871229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039927583", 
          "https://doi.org/10.1007/bf00871229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiosc.2011.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040153278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12934-015-0203-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040710095", 
          "https://doi.org/10.1186/s12934-015-0203-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12934-015-0203-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040710095", 
          "https://doi.org/10.1186/s12934-015-0203-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00294-003-0448-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045995884", 
          "https://doi.org/10.1007/s00294-003-0448-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046377249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.3054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047024609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051006342", 
          "https://doi.org/10.1186/1471-2164-9-328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2001.tb00570.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051808400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-144-1-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060369636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.26007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060396594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076547223", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083268370", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.3300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099681185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2018.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104259154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-05409-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105917908", 
          "https://doi.org/10.1038/s41467-018-05409-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106054868"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41863-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions", 
    "pagination": "5319", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8aad11d50970589c070472c3abba1e9afe5c8a2ffbcb1be89bc8d1f97f722081"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30926897"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41863-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113056151"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41863-1", 
      "https://app.dimensions.ai/details/publication/pub.1113056151"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117092_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41863-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41863-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41863-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41863-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41863-1'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41863-1 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nb9fb84ddf437493eb886c9888e307c7a
4 schema:citation sg:pub.10.1007/10_2016_22
5 sg:pub.10.1007/bf00871229
6 sg:pub.10.1007/s00253-008-1458-6
7 sg:pub.10.1007/s00253-010-2784-z
8 sg:pub.10.1007/s00253-011-3218-2
9 sg:pub.10.1007/s00294-003-0448-6
10 sg:pub.10.1038/s41467-018-05409-9
11 sg:pub.10.1186/1471-2164-9-328
12 sg:pub.10.1186/1475-2859-10-2
13 sg:pub.10.1186/s12934-015-0203-y
14 https://app.dimensions.ai/details/publication/pub.1076547223
15 https://app.dimensions.ai/details/publication/pub.1083268370
16 https://doi.org/10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4
17 https://doi.org/10.1002/(sici)1097-0061(199805)14:7<647::aid-yea269>3.0.co;2-l
18 https://doi.org/10.1002/yea.1729
19 https://doi.org/10.1002/yea.3054
20 https://doi.org/10.1002/yea.3300
21 https://doi.org/10.1016/0003-2697(76)90527-3
22 https://doi.org/10.1016/j.biortech.2014.10.150
23 https://doi.org/10.1016/j.cell.2018.07.013
24 https://doi.org/10.1016/j.jbiosc.2011.12.013
25 https://doi.org/10.1016/j.procbio.2012.05.004
26 https://doi.org/10.1016/j.ymben.2018.05.013
27 https://doi.org/10.1038/msb.2009.2
28 https://doi.org/10.1093/jxb/erp374
29 https://doi.org/10.1093/jxb/ert134
30 https://doi.org/10.1093/molbev/msq184
31 https://doi.org/10.1099/00221287-144-1-13
32 https://doi.org/10.1099/mic.0.26007-0
33 https://doi.org/10.1111/j.1574-6976.2001.tb00570.x
34 https://doi.org/10.1111/j.1742-4658.2007.05645.x
35 https://doi.org/10.1128/aem.01854-08
36 https://doi.org/10.1128/genomea.00389-15
37 schema:datePublished 2019-12
38 schema:datePublishedReg 2019-12-01
39 schema:description Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N0082352ee3174ac88ae1b647b70e2ffd
44 N22ca8f06f0454cfd85d66f3482e59f8c
45 sg:journal.1045337
46 schema:name Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions
47 schema:pagination 5319
48 schema:productId N419f4e0a26e7468c87edd9405a60b5ab
49 N743d02008f474b1daeb9c296ca7fc450
50 N96eadc90236343979ef8aaca4964cbc2
51 Nd8caae8f6a814e3fb97e46071a4d0206
52 Ne29e6c5f6703479c846f16e34d05cfbf
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113056151
54 https://doi.org/10.1038/s41598-019-41863-1
55 schema:sdDatePublished 2019-04-11T14:17
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N8b1ea3841fa6461b909780cc24e676d4
58 schema:url https://www.nature.com/articles/s41598-019-41863-1
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0082352ee3174ac88ae1b647b70e2ffd schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N14eced97ebe644f8882bb0e17d6cc280 rdf:first N3c0f5c6a9c3f4fd989e7399ccd5a29ff
65 rdf:rest rdf:nil
66 N22ca8f06f0454cfd85d66f3482e59f8c schema:volumeNumber 9
67 rdf:type schema:PublicationVolume
68 N2a284dcc3d7645918338147c7f040670 rdf:first N51c20489db0a44cea56b1bd7b06d6477
69 rdf:rest N80467a23d53b4d70b5b9856b009ee60d
70 N3c0f5c6a9c3f4fd989e7399ccd5a29ff schema:affiliation https://www.grid.ac/institutes/grid.7597.c
71 schema:familyName Kondo
72 schema:givenName Akihiko
73 rdf:type schema:Person
74 N419f4e0a26e7468c87edd9405a60b5ab schema:name nlm_unique_id
75 schema:value 101563288
76 rdf:type schema:PropertyValue
77 N51c20489db0a44cea56b1bd7b06d6477 schema:affiliation https://www.grid.ac/institutes/grid.31432.37
78 schema:familyName Hidese
79 schema:givenName Ryota
80 rdf:type schema:Person
81 N743d02008f474b1daeb9c296ca7fc450 schema:name readcube_id
82 schema:value 8aad11d50970589c070472c3abba1e9afe5c8a2ffbcb1be89bc8d1f97f722081
83 rdf:type schema:PropertyValue
84 N80467a23d53b4d70b5b9856b009ee60d rdf:first N90f637f81dee4883a9236c70af71998b
85 rdf:rest N14eced97ebe644f8882bb0e17d6cc280
86 N8b1ea3841fa6461b909780cc24e676d4 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N90f637f81dee4883a9236c70af71998b schema:affiliation https://www.grid.ac/institutes/grid.31432.37
89 schema:familyName Hasunuma
90 schema:givenName Tomohisa
91 rdf:type schema:Person
92 N96eadc90236343979ef8aaca4964cbc2 schema:name dimensions_id
93 schema:value pub.1113056151
94 rdf:type schema:PropertyValue
95 Nb9fb84ddf437493eb886c9888e307c7a rdf:first Nce48b501461947ca816697d8c37e0fa4
96 rdf:rest N2a284dcc3d7645918338147c7f040670
97 Nce48b501461947ca816697d8c37e0fa4 schema:affiliation https://www.grid.ac/institutes/grid.31432.37
98 schema:familyName Sakihama
99 schema:givenName Yuri
100 rdf:type schema:Person
101 Nd8caae8f6a814e3fb97e46071a4d0206 schema:name pubmed_id
102 schema:value 30926897
103 rdf:type schema:PropertyValue
104 Ne29e6c5f6703479c846f16e34d05cfbf schema:name doi
105 schema:value 10.1038/s41598-019-41863-1
106 rdf:type schema:PropertyValue
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biochemistry and Cell Biology
112 rdf:type schema:DefinedTerm
113 sg:journal.1045337 schema:issn 2045-2322
114 schema:name Scientific Reports
115 rdf:type schema:Periodical
116 sg:pub.10.1007/10_2016_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025069239
117 https://doi.org/10.1007/10_2016_22
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf00871229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039927583
120 https://doi.org/10.1007/bf00871229
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00253-008-1458-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034874229
123 https://doi.org/10.1007/s00253-008-1458-6
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00253-010-2784-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025852089
126 https://doi.org/10.1007/s00253-010-2784-z
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00253-011-3218-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019236594
129 https://doi.org/10.1007/s00253-011-3218-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00294-003-0448-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045995884
132 https://doi.org/10.1007/s00294-003-0448-6
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/s41467-018-05409-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105917908
135 https://doi.org/10.1038/s41467-018-05409-9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/1471-2164-9-328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051006342
138 https://doi.org/10.1186/1471-2164-9-328
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1475-2859-10-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019973852
141 https://doi.org/10.1186/1475-2859-10-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/s12934-015-0203-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040710095
144 https://doi.org/10.1186/s12934-015-0203-y
145 rdf:type schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1076547223 schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1083268370 schema:CreativeWork
148 https://doi.org/10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046377249
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/(sici)1097-0061(199805)14:7<647::aid-yea269>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1030614800
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/yea.1729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031549654
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/yea.3054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047024609
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/yea.3300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099681185
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0003-2697(76)90527-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025529346
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.biortech.2014.10.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010983973
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.cell.2018.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106054868
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jbiosc.2011.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040153278
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.procbio.2012.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032661878
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ymben.2018.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104259154
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1038/msb.2009.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011020047
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/jxb/erp374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035392396
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/jxb/ert134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016361854
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/molbev/msq184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038962427
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1099/00221287-144-1-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060369636
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1099/mic.0.26007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060396594
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/j.1574-6976.2001.tb00570.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051808400
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1742-4658.2007.05645.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028221364
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1128/aem.01854-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037397294
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1128/genomea.00389-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029420198
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.31432.37 schema:alternateName Kobe University
191 schema:name Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
194 schema:name Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan
195 RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, 230-0045, Yokohama, Kanagawa, Japan
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...