A generalized model for combining dependent SNP-level summary statistics and its extensions to statistics of other levels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Gulnara R. Svishcheva

ABSTRACT

Here I propose a fundamentally new flexible model to reveal the association between a trait and a set of genetic variants in a genomic region/gene. This model was developed for the situation when original individual-level phenotype and genotype data are not available, but the researcher possesses the results of statistical analyses conducted on these data (namely, SNP-level summary Z score statistics and SNP-by-SNP correlations). The new model was analytically derived from the classical multiple linear regression model applied for the region-based association analysis of individual-level phenotype and genotype data by using the linear compression of data, where the SNP-by-SNP correlations are among the explanatory variables, and the summary Z score statistics are categorized as the response variables. I analytically show that the regional association analysis methods developed within the framework of the classical multiple linear regression model with additive effects of genetic variants can be reformulated in terms of the new model without the loss of information. The results obtained from the regional association analysis utilizing the classical model and those derived using the proposed model are identical when SNP-by-SNP correlations and SNP-level statistics are estimated from the same genetic data. More... »

PAGES

5461

References to SciGraph publications

  • 2011-10. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk in NATURE
  • 2010-06. Uncovering the roles of rare variants in common disease through whole-genome sequencing in NATURE REVIEWS GENETICS
  • 2013-11. Discovery and refinement of loci associated with lipid levels in NATURE GENETICS
  • 2016-03. Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium in BEHAVIOR GENETICS
  • 2010-09. Integrating common and rare genetic variation in diverse human populations in NATURE
  • 2009-08. Predicting human height by Victorian and genomic methods in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2017-02. Dissecting the genetics of complex traits using summary association statistics in NATURE REVIEWS GENETICS
  • 2016-10. A reference panel of 64,976 haplotypes for genotype imputation in NATURE GENETICS
  • 2009-10-08. Finding the missing heritability of complex diseases in NATURE
  • 2016-07. Some pitfalls in application of functional data analysis approach to association studies in SCIENTIFIC REPORTS
  • 2015-10. An integrated map of structural variation in 2,504 human genomes in NATURE
  • 2012-04. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits in NATURE GENETICS
  • 2012-03. Meta-analysis of genome-wide association studies for personality in MOLECULAR PSYCHIATRY
  • 2017-03. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2010-06. Missing heritability and strategies for finding the underlying causes of complex disease in NATURE REVIEWS GENETICS
  • Journal

    TITLE

    Scientific Reports

    ISSUE

    1

    VOLUME

    9

    Author Affiliations

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-41827-5

    DOI

    http://dx.doi.org/10.1038/s41598-019-41827-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113170253

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30940856


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
                "Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Svishcheva", 
            "givenName": "Gulnara R.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature10405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000059117", 
              "https://doi.org/10.1038/nature10405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000757318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.115.016915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001399167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001583272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001583272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002187418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.178343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002187418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2009.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004734299", 
              "https://doi.org/10.1038/ejhg.2009.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005147626", 
              "https://doi.org/10.1038/nature08494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005147626", 
              "https://doi.org/10.1038/nature08494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006110604", 
              "https://doi.org/10.1038/ng.2213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006164862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006164862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007162866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008876090", 
              "https://doi.org/10.1038/nrg2809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008876090", 
              "https://doi.org/10.1038/nrg2809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0065395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011387154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0099407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011877334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0099407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011877334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.01.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013876446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.01.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013876446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep23918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014858768", 
              "https://doi.org/10.1038/srep23918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2016.170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018637333", 
              "https://doi.org/10.1038/ejhg.2016.170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018974461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018974461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2010.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024794739", 
              "https://doi.org/10.1038/mp.2010.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026983683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029375392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030798131", 
              "https://doi.org/10.1038/nrg.2016.142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031274231", 
              "https://doi.org/10.1038/nature15394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031899225", 
              "https://doi.org/10.1038/ng.2797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2007.00799.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031900026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jmedgenet-2012-100798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034710198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035776980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2014.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037760861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2008.06.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038826763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2008.06.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038826763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10519-015-9735-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040985095", 
              "https://doi.org/10.1007/s10519-015-9735-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10519-015-9735-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040985095", 
              "https://doi.org/10.1007/s10519-015-9735-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-statistics-041715-033624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043652443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.21757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043989736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2007.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044849844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jgg.2015.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046991798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046999759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.21895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047790764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2012.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048338238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0128999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048539386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048618297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049291823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049291823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.21775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049846866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.2016.0569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049876738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050625874", 
              "https://doi.org/10.1038/nrg2779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050625874", 
              "https://doi.org/10.1038/nrg2779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050700099", 
              "https://doi.org/10.1038/ng.3643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050700099", 
              "https://doi.org/10.1038/ng.3643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052207812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052674054", 
              "https://doi.org/10.1038/nature09298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052674054", 
              "https://doi.org/10.1038/nature09298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btw160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1099870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.180869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.22105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099639140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.22105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099639140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2017.09.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099689121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2017.09.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099689121"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Here I propose a fundamentally new flexible model to reveal the association between a trait and a set of genetic variants in a genomic region/gene. This model was developed for the situation when original individual-level phenotype and genotype data are not available, but the researcher possesses the results of statistical analyses conducted on these data (namely, SNP-level summary Z score statistics and SNP-by-SNP correlations). The new model was analytically derived from the classical multiple linear regression model applied for the region-based association analysis of individual-level phenotype and genotype data by using the linear compression of data, where the SNP-by-SNP correlations are among the explanatory variables, and the summary Z score statistics are categorized as the response variables. I analytically show that the regional association analysis methods developed within the framework of the classical multiple linear regression model with additive effects of genetic variants can be reformulated in terms of the new model without the loss of information. The results obtained from the regional association analysis utilizing the classical model and those derived using the proposed model are identical when SNP-by-SNP correlations and SNP-level statistics are estimated from the same genetic data.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-41827-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7595743", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6744910", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5345014", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "A generalized model for combining dependent SNP-level summary statistics and its extensions to statistics of other levels", 
        "pagination": "5461", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-41827-5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "00ab6713aa59d41e4bd75d70cc8d7d0a45dcf6e2483f3f8519b90069bdf839b1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113170253"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30940856"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-41827-5", 
          "https://app.dimensions.ai/details/publication/pub.1113170253"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56196_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-41827-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41827-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41827-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41827-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41827-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      21 PREDICATES      79 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-41827-5 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Ne99baf01a2ec4bdea4048d019e6137fb
    4 schema:citation sg:pub.10.1007/s10519-015-9735-5
    5 sg:pub.10.1038/ejhg.2009.5
    6 sg:pub.10.1038/ejhg.2016.170
    7 sg:pub.10.1038/mp.2010.128
    8 sg:pub.10.1038/nature08494
    9 sg:pub.10.1038/nature09298
    10 sg:pub.10.1038/nature10405
    11 sg:pub.10.1038/nature15394
    12 sg:pub.10.1038/ng.2213
    13 sg:pub.10.1038/ng.2797
    14 sg:pub.10.1038/ng.3643
    15 sg:pub.10.1038/nrg.2016.142
    16 sg:pub.10.1038/nrg2779
    17 sg:pub.10.1038/nrg2809
    18 sg:pub.10.1038/srep23918
    19 https://doi.org/10.1002/gepi.20266
    20 https://doi.org/10.1002/gepi.20450
    21 https://doi.org/10.1002/gepi.20481
    22 https://doi.org/10.1002/gepi.20579
    23 https://doi.org/10.1002/gepi.21757
    24 https://doi.org/10.1002/gepi.21775
    25 https://doi.org/10.1002/gepi.21895
    26 https://doi.org/10.1002/gepi.22105
    27 https://doi.org/10.1016/j.ajhg.2007.10.010
    28 https://doi.org/10.1016/j.ajhg.2008.06.024
    29 https://doi.org/10.1016/j.ajhg.2010.04.005
    30 https://doi.org/10.1016/j.ajhg.2010.05.002
    31 https://doi.org/10.1016/j.ajhg.2011.01.019
    32 https://doi.org/10.1016/j.ajhg.2011.05.029
    33 https://doi.org/10.1016/j.ajhg.2012.06.007
    34 https://doi.org/10.1016/j.ajhg.2013.05.010
    35 https://doi.org/10.1016/j.ajhg.2014.06.009
    36 https://doi.org/10.1016/j.ajhg.2014.11.011
    37 https://doi.org/10.1016/j.ajhg.2017.09.027
    38 https://doi.org/10.1016/j.jgg.2015.02.001
    39 https://doi.org/10.1093/bioinformatics/btu416
    40 https://doi.org/10.1093/bioinformatics/btw160
    41 https://doi.org/10.1098/rspb.2016.0569
    42 https://doi.org/10.1111/j.1541-0420.2007.00799.x
    43 https://doi.org/10.1126/science.1099870
    44 https://doi.org/10.1136/jmedgenet-2012-100798
    45 https://doi.org/10.1146/annurev-statistics-041715-033624
    46 https://doi.org/10.1371/journal.pcbi.1004714
    47 https://doi.org/10.1371/journal.pgen.1000384
    48 https://doi.org/10.1371/journal.pone.0065395
    49 https://doi.org/10.1371/journal.pone.0099407
    50 https://doi.org/10.1371/journal.pone.0128999
    51 https://doi.org/10.1534/g3.115.016915
    52 https://doi.org/10.1534/genetics.115.178343
    53 https://doi.org/10.1534/genetics.115.180869
    54 schema:datePublished 2019-12
    55 schema:datePublishedReg 2019-12-01
    56 schema:description Here I propose a fundamentally new flexible model to reveal the association between a trait and a set of genetic variants in a genomic region/gene. This model was developed for the situation when original individual-level phenotype and genotype data are not available, but the researcher possesses the results of statistical analyses conducted on these data (namely, SNP-level summary Z score statistics and SNP-by-SNP correlations). The new model was analytically derived from the classical multiple linear regression model applied for the region-based association analysis of individual-level phenotype and genotype data by using the linear compression of data, where the SNP-by-SNP correlations are among the explanatory variables, and the summary Z score statistics are categorized as the response variables. I analytically show that the regional association analysis methods developed within the framework of the classical multiple linear regression model with additive effects of genetic variants can be reformulated in terms of the new model without the loss of information. The results obtained from the regional association analysis utilizing the classical model and those derived using the proposed model are identical when SNP-by-SNP correlations and SNP-level statistics are estimated from the same genetic data.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N1756bfcb4c02454a97808b8a3b286d29
    61 N38663748007749f2b64a4ff158b50ce9
    62 sg:journal.1045337
    63 schema:name A generalized model for combining dependent SNP-level summary statistics and its extensions to statistics of other levels
    64 schema:pagination 5461
    65 schema:productId N39bb1ade88834f06ad4c87916dc1abc2
    66 N5a67b2d8b1e94f2fa2d8f8c991829ceb
    67 N6e70224c68dc408a9dd58035879ab341
    68 N8cdb0b31e5f24a6b9f3a8034cc7d4a89
    69 Ncdd80612eba641a28783f0f0d6b11e36
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113170253
    71 https://doi.org/10.1038/s41598-019-41827-5
    72 schema:sdDatePublished 2019-04-15T09:28
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher Nb523b389546e48ec9d9f50fe5b1e69d3
    75 schema:url https://www.nature.com/articles/s41598-019-41827-5
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N03bd34ccfa3e4f5185602d2c04249543 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    80 schema:familyName Svishcheva
    81 schema:givenName Gulnara R.
    82 rdf:type schema:Person
    83 N1756bfcb4c02454a97808b8a3b286d29 schema:issueNumber 1
    84 rdf:type schema:PublicationIssue
    85 N38663748007749f2b64a4ff158b50ce9 schema:volumeNumber 9
    86 rdf:type schema:PublicationVolume
    87 N39bb1ade88834f06ad4c87916dc1abc2 schema:name readcube_id
    88 schema:value 00ab6713aa59d41e4bd75d70cc8d7d0a45dcf6e2483f3f8519b90069bdf839b1
    89 rdf:type schema:PropertyValue
    90 N5a67b2d8b1e94f2fa2d8f8c991829ceb schema:name pubmed_id
    91 schema:value 30940856
    92 rdf:type schema:PropertyValue
    93 N6e70224c68dc408a9dd58035879ab341 schema:name doi
    94 schema:value 10.1038/s41598-019-41827-5
    95 rdf:type schema:PropertyValue
    96 N8cdb0b31e5f24a6b9f3a8034cc7d4a89 schema:name dimensions_id
    97 schema:value pub.1113170253
    98 rdf:type schema:PropertyValue
    99 Nb523b389546e48ec9d9f50fe5b1e69d3 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 Ncdd80612eba641a28783f0f0d6b11e36 schema:name nlm_unique_id
    102 schema:value 101563288
    103 rdf:type schema:PropertyValue
    104 Ne99baf01a2ec4bdea4048d019e6137fb rdf:first N03bd34ccfa3e4f5185602d2c04249543
    105 rdf:rest rdf:nil
    106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Biological Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Genetics
    111 rdf:type schema:DefinedTerm
    112 sg:grant.5345014 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41827-5
    113 rdf:type schema:MonetaryGrant
    114 sg:grant.6744910 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41827-5
    115 rdf:type schema:MonetaryGrant
    116 sg:grant.7595743 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41827-5
    117 rdf:type schema:MonetaryGrant
    118 sg:journal.1045337 schema:issn 2045-2322
    119 schema:name Scientific Reports
    120 rdf:type schema:Periodical
    121 sg:pub.10.1007/s10519-015-9735-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040985095
    122 https://doi.org/10.1007/s10519-015-9735-5
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/ejhg.2009.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004734299
    125 https://doi.org/10.1038/ejhg.2009.5
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/ejhg.2016.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018637333
    128 https://doi.org/10.1038/ejhg.2016.170
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1038/mp.2010.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794739
    131 https://doi.org/10.1038/mp.2010.128
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nature08494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005147626
    134 https://doi.org/10.1038/nature08494
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nature09298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052674054
    137 https://doi.org/10.1038/nature09298
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nature10405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000059117
    140 https://doi.org/10.1038/nature10405
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nature15394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031274231
    143 https://doi.org/10.1038/nature15394
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/ng.2213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006110604
    146 https://doi.org/10.1038/ng.2213
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/ng.2797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031899225
    149 https://doi.org/10.1038/ng.2797
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/ng.3643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050700099
    152 https://doi.org/10.1038/ng.3643
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nrg.2016.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030798131
    155 https://doi.org/10.1038/nrg.2016.142
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nrg2779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050625874
    158 https://doi.org/10.1038/nrg2779
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nrg2809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008876090
    161 https://doi.org/10.1038/nrg2809
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/srep23918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014858768
    164 https://doi.org/10.1038/srep23918
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1002/gepi.20266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029375392
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1002/gepi.20450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049291823
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1002/gepi.20481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018974461
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1002/gepi.20579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026983683
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1002/gepi.21757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043989736
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1002/gepi.21775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049846866
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1002/gepi.21895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047790764
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/gepi.22105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099639140
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.ajhg.2007.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044849844
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.ajhg.2008.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038826763
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.ajhg.2010.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000757318
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.ajhg.2010.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046999759
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.ajhg.2011.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013876446
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.ajhg.2011.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001583272
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.ajhg.2012.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048338238
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.ajhg.2013.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048618297
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.ajhg.2014.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037760861
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.ajhg.2014.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006164862
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.ajhg.2017.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099689121
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.jgg.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046991798
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1093/bioinformatics/btu416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007162866
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1093/bioinformatics/btw160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414717
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1098/rspb.2016.0569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049876738
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1111/j.1541-0420.2007.00799.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031900026
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1126/science.1099870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449790
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1136/jmedgenet-2012-100798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034710198
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1146/annurev-statistics-041715-033624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043652443
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1371/journal.pcbi.1004714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052207812
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1371/journal.pgen.1000384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035776980
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1371/journal.pone.0065395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011387154
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1371/journal.pone.0099407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011877334
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1371/journal.pone.0128999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048539386
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1534/g3.115.016915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001399167
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1534/genetics.115.178343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002187418
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1534/genetics.115.180869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739473
    235 rdf:type schema:CreativeWork
    236 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    237 schema:name Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
    238 Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...