Extremely Large Magnetic-Field-Effects on the Impedance Response of TiO2 Quantum Dots View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Dominique Mombrú, Mariano Romero, Ricardo Faccio, Milton A. Tumelero, Alvaro W. Mombrú

ABSTRACT

Here, we report large magnetoresistance and magnetocapacitance response of undoped TiO2 quantum dots weighting the contribution of both grain and grain boundaries by means of impedance spectroscopy. We also performed a complete characterization of the TiO2 quantum dots (~5 nm) prepared by sol-gel via water vapor diffusion method, using X-ray diffraction, small angle X-ray scattering, transmission electron microscopy and Raman spectroscopy. In addition, we showed a complete theoretical study on the electronic properties of TiO2 surface and subsurface oxygen and titanium vacancies to shed some light in their electronic and magnetic properties. Based in our study, we can conclude that the presence of defects, mainly at the grain boundary of these undoped TiO2 quantum dots, could be responsible for the large positive magnetoresistance (+1200%) and negative magnetocapacitance (-115%) responses at low applied magnetic fields (1.8 kOe) and room temperature. More... »

PAGES

5322

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41792-z

DOI

http://dx.doi.org/10.1038/s41598-019-41792-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113053567

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30926939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of the Republic", 
          "id": "https://www.grid.ac/institutes/grid.11630.35", 
          "name": [
            "Centro NanoMat/CryssMat & F\u00edsica, DETEMA, Facultad de Qu\u00edmica, Universidad de la Rep\u00fablica (UdelaR), 11800, Montevideo, C.P., Uruguay"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mombr\u00fa", 
        "givenName": "Dominique", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Republic", 
          "id": "https://www.grid.ac/institutes/grid.11630.35", 
          "name": [
            "Centro NanoMat/CryssMat & F\u00edsica, DETEMA, Facultad de Qu\u00edmica, Universidad de la Rep\u00fablica (UdelaR), 11800, Montevideo, C.P., Uruguay"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romero", 
        "givenName": "Mariano", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Republic", 
          "id": "https://www.grid.ac/institutes/grid.11630.35", 
          "name": [
            "Centro NanoMat/CryssMat & F\u00edsica, DETEMA, Facultad de Qu\u00edmica, Universidad de la Rep\u00fablica (UdelaR), 11800, Montevideo, C.P., Uruguay"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faccio", 
        "givenName": "Ricardo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Rio Grande do Sul", 
          "id": "https://www.grid.ac/institutes/grid.8532.c", 
          "name": [
            "Instituto de F\u00edsica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, C.P., Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tumelero", 
        "givenName": "Milton A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Republic", 
          "id": "https://www.grid.ac/institutes/grid.11630.35", 
          "name": [
            "Centro NanoMat/CryssMat & F\u00edsica, DETEMA, Facultad de Qu\u00edmica, Universidad de la Rep\u00fablica (UdelaR), 11800, Montevideo, C.P., Uruguay"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mombr\u00fa", 
        "givenName": "Alvaro W.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmmm.2004.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002497079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/27/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005684679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/387266a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007914765", 
          "https://doi.org/10.1038/387266a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2007.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011065744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012769625", 
          "https://doi.org/10.1038/srep09221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/5/053025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017472329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/5/053025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017472329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201100917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026051242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja512047k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027877033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.01.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030833483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la504769k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031435699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201304338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034125807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2006.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037773607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.05.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039691165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2013.07.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044357172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/19/195405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044596939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/19/195405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044596939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2016.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046801216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/33/8/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047938501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrs.3103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051706651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430630a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051977254", 
          "https://doi.org/10.1038/430630a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430630a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051977254", 
          "https://doi.org/10.1038/430630a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm504261q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053931125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9046193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9046193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1384478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057701426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1670482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057746948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2719032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057860087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2921051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057884742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4737773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058055658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.56.978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060450890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.56.978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060450890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5455.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2017.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084092713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2017.05.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085606060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.7b03604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090717630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpcs.2017.07.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090924338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orgel.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091050616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.7b08400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092261821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.7b08732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092580757"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Here, we report large magnetoresistance and magnetocapacitance response of undoped TiO2 quantum dots weighting the contribution of both grain and grain boundaries by means of impedance spectroscopy. We also performed a complete characterization of the TiO2 quantum dots (~5\u2009nm) prepared by sol-gel via water vapor diffusion method, using X-ray diffraction, small angle X-ray scattering, transmission electron microscopy and Raman spectroscopy. In addition, we showed a complete theoretical study on the electronic properties of TiO2 surface and subsurface oxygen and titanium vacancies to shed some light in their electronic and magnetic properties. Based in our study, we can conclude that the presence of defects, mainly at the grain boundary of these undoped TiO2 quantum dots, could be responsible for the large positive magnetoresistance (+1200%) and negative magnetocapacitance (-115%) responses at low applied magnetic fields (1.8\u2009kOe) and room temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41792-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Extremely Large Magnetic-Field-Effects on the Impedance Response of TiO2 Quantum Dots", 
    "pagination": "5322", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "556f7c4f1c89afea4132b4067d7b63719c5d9fa2063fd11622d9052e7c32fd0b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30926939"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41792-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113053567"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41792-z", 
      "https://app.dimensions.ai/details/publication/pub.1113053567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117088_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41792-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41792-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41792-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41792-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41792-z'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41792-z schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N660251e7810049a1be1c4181b283bd42
4 schema:citation sg:pub.10.1038/387266a0
5 sg:pub.10.1038/430630a
6 sg:pub.10.1038/srep09221
7 https://doi.org/10.1002/adma.201100917
8 https://doi.org/10.1002/adma.201304338
9 https://doi.org/10.1002/jrs.3103
10 https://doi.org/10.1016/0927-0256(96)00008-0
11 https://doi.org/10.1016/j.jallcom.2013.07.188
12 https://doi.org/10.1016/j.jallcom.2015.05.199
13 https://doi.org/10.1016/j.jmmm.2004.11.016
14 https://doi.org/10.1016/j.jmmm.2007.07.026
15 https://doi.org/10.1016/j.jmmm.2015.01.045
16 https://doi.org/10.1016/j.jmmm.2017.05.057
17 https://doi.org/10.1016/j.jpcs.2017.07.028
18 https://doi.org/10.1016/j.jssc.2017.03.016
19 https://doi.org/10.1016/j.matchemphys.2016.01.003
20 https://doi.org/10.1016/j.msec.2006.09.002
21 https://doi.org/10.1016/j.orgel.2017.08.003
22 https://doi.org/10.1021/acs.jpcc.7b03604
23 https://doi.org/10.1021/acs.jpcc.7b08400
24 https://doi.org/10.1021/acs.jpcc.7b08732
25 https://doi.org/10.1021/cm504261q
26 https://doi.org/10.1021/ja512047k
27 https://doi.org/10.1021/jp9046193
28 https://doi.org/10.1021/la504769k
29 https://doi.org/10.1063/1.1384478
30 https://doi.org/10.1063/1.1670482
31 https://doi.org/10.1063/1.2719032
32 https://doi.org/10.1063/1.2921051
33 https://doi.org/10.1063/1.4737773
34 https://doi.org/10.1088/0022-3727/33/8/305
35 https://doi.org/10.1088/0953-8984/18/27/l01
36 https://doi.org/10.1088/0953-8984/21/19/195405
37 https://doi.org/10.1088/1367-2630/12/5/053025
38 https://doi.org/10.1103/physrev.136.b864
39 https://doi.org/10.1103/physrev.140.a1133
40 https://doi.org/10.1103/physrev.56.978
41 https://doi.org/10.1103/physrevb.47.558
42 https://doi.org/10.1103/physrevb.49.14251
43 https://doi.org/10.1103/physrevb.50.17953
44 https://doi.org/10.1103/physrevb.59.1758
45 https://doi.org/10.1103/physrevlett.77.3865
46 https://doi.org/10.1103/physrevlett.78.1396
47 https://doi.org/10.1126/science.287.5455.1019
48 schema:datePublished 2019-12
49 schema:datePublishedReg 2019-12-01
50 schema:description Here, we report large magnetoresistance and magnetocapacitance response of undoped TiO<sub>2</sub> quantum dots weighting the contribution of both grain and grain boundaries by means of impedance spectroscopy. We also performed a complete characterization of the TiO<sub>2</sub> quantum dots (~5 nm) prepared by sol-gel via water vapor diffusion method, using X-ray diffraction, small angle X-ray scattering, transmission electron microscopy and Raman spectroscopy. In addition, we showed a complete theoretical study on the electronic properties of TiO<sub>2</sub> surface and subsurface oxygen and titanium vacancies to shed some light in their electronic and magnetic properties. Based in our study, we can conclude that the presence of defects, mainly at the grain boundary of these undoped TiO<sub>2</sub> quantum dots, could be responsible for the large positive magnetoresistance (+1200%) and negative magnetocapacitance (-115%) responses at low applied magnetic fields (1.8 kOe) and room temperature.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N1f669c5952244a87a79baddf2bccf1f3
55 N745fbd8270074271b90f40250bd1f4e1
56 sg:journal.1045337
57 schema:name Extremely Large Magnetic-Field-Effects on the Impedance Response of TiO2 Quantum Dots
58 schema:pagination 5322
59 schema:productId N28c1480d966d48a8aaeae91896891a69
60 N82bec55bcc444d9da6b2ee5a9db3a9c0
61 Nb39eca3f074c47229daa9cf8bbd55531
62 Nc1e45192955b4f219569f949a42d1522
63 Ne84218be83974e279e7781ef480b987d
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113053567
65 https://doi.org/10.1038/s41598-019-41792-z
66 schema:sdDatePublished 2019-04-11T14:16
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nffd4a2d3a4ec451dab887f44ef208725
69 schema:url https://www.nature.com/articles/s41598-019-41792-z
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N1f669c5952244a87a79baddf2bccf1f3 schema:volumeNumber 9
74 rdf:type schema:PublicationVolume
75 N28c1480d966d48a8aaeae91896891a69 schema:name nlm_unique_id
76 schema:value 101563288
77 rdf:type schema:PropertyValue
78 N3268384c691d4a4ca25b974c57377ab0 rdf:first N4aa48ff33b974f4991bff79c794a03ec
79 rdf:rest N8424f29927f643c1b3842debba7e4ad2
80 N35598c3814e7428bbcebe76d9ae88278 rdf:first Nb86626aaa43f41769ef0e345aae6e562
81 rdf:rest Ne9a11bc4b82b4154a3644cf53371b048
82 N3af606e95f7a403195f5603a5a1260b7 schema:affiliation https://www.grid.ac/institutes/grid.11630.35
83 schema:familyName Mombrú
84 schema:givenName Dominique
85 rdf:type schema:Person
86 N4aa48ff33b974f4991bff79c794a03ec schema:affiliation https://www.grid.ac/institutes/grid.8532.c
87 schema:familyName Tumelero
88 schema:givenName Milton A.
89 rdf:type schema:Person
90 N660251e7810049a1be1c4181b283bd42 rdf:first N3af606e95f7a403195f5603a5a1260b7
91 rdf:rest N35598c3814e7428bbcebe76d9ae88278
92 N745fbd8270074271b90f40250bd1f4e1 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N82bec55bcc444d9da6b2ee5a9db3a9c0 schema:name dimensions_id
95 schema:value pub.1113053567
96 rdf:type schema:PropertyValue
97 N8424f29927f643c1b3842debba7e4ad2 rdf:first N8c8e89b9ebd14e8c946de21bb7e0fb8d
98 rdf:rest rdf:nil
99 N8c8e89b9ebd14e8c946de21bb7e0fb8d schema:affiliation https://www.grid.ac/institutes/grid.11630.35
100 schema:familyName Mombrú
101 schema:givenName Alvaro W.
102 rdf:type schema:Person
103 Nb39eca3f074c47229daa9cf8bbd55531 schema:name doi
104 schema:value 10.1038/s41598-019-41792-z
105 rdf:type schema:PropertyValue
106 Nb86626aaa43f41769ef0e345aae6e562 schema:affiliation https://www.grid.ac/institutes/grid.11630.35
107 schema:familyName Romero
108 schema:givenName Mariano
109 rdf:type schema:Person
110 Nc1e45192955b4f219569f949a42d1522 schema:name readcube_id
111 schema:value 556f7c4f1c89afea4132b4067d7b63719c5d9fa2063fd11622d9052e7c32fd0b
112 rdf:type schema:PropertyValue
113 Nc65e2e36b5464fe99a0717591719a4b2 schema:affiliation https://www.grid.ac/institutes/grid.11630.35
114 schema:familyName Faccio
115 schema:givenName Ricardo
116 rdf:type schema:Person
117 Ne84218be83974e279e7781ef480b987d schema:name pubmed_id
118 schema:value 30926939
119 rdf:type schema:PropertyValue
120 Ne9a11bc4b82b4154a3644cf53371b048 rdf:first Nc65e2e36b5464fe99a0717591719a4b2
121 rdf:rest N3268384c691d4a4ca25b974c57377ab0
122 Nffd4a2d3a4ec451dab887f44ef208725 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
128 schema:name Other Physical Sciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1045337 schema:issn 2045-2322
131 schema:name Scientific Reports
132 rdf:type schema:Periodical
133 sg:pub.10.1038/387266a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007914765
134 https://doi.org/10.1038/387266a0
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/430630a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051977254
137 https://doi.org/10.1038/430630a
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep09221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012769625
140 https://doi.org/10.1038/srep09221
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/adma.201100917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026051242
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/adma.201304338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034125807
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/jrs.3103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051706651
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jallcom.2013.07.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044357172
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jallcom.2015.05.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039691165
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jmmm.2004.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002497079
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jmmm.2007.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011065744
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jmmm.2015.01.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030833483
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jmmm.2017.05.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085606060
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jpcs.2017.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090924338
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jssc.2017.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084092713
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.matchemphys.2016.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046801216
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.msec.2006.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037773607
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.orgel.2017.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091050616
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/acs.jpcc.7b03604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090717630
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/acs.jpcc.7b08400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261821
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/acs.jpcc.7b08732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092580757
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/cm504261q schema:sameAs https://app.dimensions.ai/details/publication/pub.1053931125
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/ja512047k schema:sameAs https://app.dimensions.ai/details/publication/pub.1027877033
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/jp9046193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056115772
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/la504769k schema:sameAs https://app.dimensions.ai/details/publication/pub.1031435699
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.1384478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057701426
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.1670482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057746948
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.2719032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057860087
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.2921051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057884742
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.4737773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058055658
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/0022-3727/33/8/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047938501
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/0953-8984/18/27/l01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005684679
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0953-8984/21/19/195405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044596939
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/1367-2630/12/5/053025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017472329
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrev.136.b864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429813
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrev.140.a1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431417
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrev.56.978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060450890
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.49.14251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570025
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.78.1396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814744
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.287.5455.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568262
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.11630.35 schema:alternateName University of the Republic
225 schema:name Centro NanoMat/CryssMat & Física, DETEMA, Facultad de Química, Universidad de la República (UdelaR), 11800, Montevideo, C.P., Uruguay
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.8532.c schema:alternateName Federal University of Rio Grande do Sul
228 schema:name Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, C.P., Brazil
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...