Low Lattice Thermal Conductivity of a Two-Dimensional Phosphorene Oxide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Seungjun Lee, Seoung-Hun Kang, Young-Kyun Kwon

ABSTRACT

A fundamental understanding of the phonon transport mechanism is important for optimizing the efficiency of thermoelectric devices. In this study, we investigate the thermal transport properties of the oxidized form of phosphorene called phosphorene oxide (PO) by solving phonon Boltzmann transport equation based on first-principles density functional theory. We reveal that PO exhibits a much lower thermal conductivity (2.42-7.08 W/mK at 300 K) than its pristine counterpart as well as other two-dimensional materials. To comprehend the physical origin of such low thermal conductivity, we scrutinize the contribution of each phonon branch to the thermal conductivity by evaluating various mode-dependent quantities including Grüneisen parameters, anharmonic three-phonon scattering rate, and phase space of three-phonon scattering processes. Our results show that its flexible puckered structure of PO leads to smaller sound velocities; its broken-mirror symmetry allows more ZA phonon scattering; and the relatively-free vibration of dangling oxygen atoms in PO gives rise to additional scattering resulting in further reduction in the phonon lifetime. These results can be verified by the fact that PO has larger phase space for three-phonon processes than phosphorene. Furthermore we show that the thermal conductivity of PO can be optimized by controlling its size or its phonon mean free path, indicating that PO can be a promising candidate for low-dimensional thermoelectric devices. More... »

PAGES

5149

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-41696-y

    DOI

    http://dx.doi.org/10.1038/s41598-019-41696-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112983834

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30914726


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kyung Hee University", 
              "id": "https://www.grid.ac/institutes/grid.289247.2", 
              "name": [
                "Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, 02447, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Seungjun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.249961.1", 
              "name": [
                "Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, 02447, Seoul, Korea", 
                "Korea Institute for Advanced Study (KIAS), 02455, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Seoung-Hun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kyung Hee University", 
              "id": "https://www.grid.ac/institutes/grid.289247.2", 
              "name": [
                "Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, 02447, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwon", 
            "givenName": "Young-Kyun", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1039/c4cp04858j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000181318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl5032293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001132327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.035438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002470625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.035438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002470625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005318515", 
              "https://doi.org/10.1038/srep08501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.15.7436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005880290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn405826k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006791107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4nr05384b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007642521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.115418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008415674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.115418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008415674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/20/16/165209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008674380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep20225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008928746", 
              "https://doi.org/10.1038/srep20225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn501226z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009826879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012146906", 
              "https://doi.org/10.1038/nature13184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4905540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013402481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.235419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013924011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.235419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013924011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014934672", 
              "https://doi.org/10.1038/35098012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014934672", 
              "https://doi.org/10.1038/35098012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014989328", 
              "https://doi.org/10.1038/nmat2090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5nr03577e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019795078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024247269", 
              "https://doi.org/10.1038/nmat3568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.214302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025828535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.214302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025828535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4922118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026353529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4878395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026786276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5ra19747c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026941205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.4613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028563783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.4613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028563783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-4526(95)00016-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030923705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1093164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031894123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033493248", 
              "https://doi.org/10.1038/nature06458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.085407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034283627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.085407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034283627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.201404294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034358323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl504257q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036033035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4868132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037841774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.035422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.035422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0081-1947(08)60551-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042332056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2014.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047040569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047601400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047601400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl502865s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048466635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.07.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052222149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b01536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055121519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp5079357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056102814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1345515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057697140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2053-1583/aa57fc", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059182985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.140.a1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.140.a1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.28.4847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060533463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.28.4847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060533463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.12727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.12727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.16631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.16631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060566310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060566310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.17953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.17953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.11169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060581262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.1758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060591374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.1758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060591374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.155413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060628089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.155413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060628089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.115427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.115427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060633736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.085409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060636611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.085409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060636611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.155421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060637144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.155421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060637144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.174307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.174307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41699-017-0007-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084768667", 
              "https://doi.org/10.1038/s41699-017-0007-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "A fundamental understanding of the phonon transport mechanism is important for optimizing the efficiency of thermoelectric devices. In this study, we investigate the thermal transport properties of the oxidized form of phosphorene called phosphorene oxide (PO) by solving phonon Boltzmann transport equation based on first-principles density functional theory. We reveal that PO exhibits a much lower thermal conductivity (2.42-7.08\u2009W/mK at 300\u2009K) than its pristine counterpart as well as other two-dimensional materials. To comprehend the physical origin of such low thermal conductivity, we scrutinize the contribution of each phonon branch to the thermal conductivity by evaluating various mode-dependent quantities including Gr\u00fcneisen parameters, anharmonic three-phonon scattering rate, and\u00a0phase space of three-phonon scattering processes. Our results show that its flexible puckered structure of PO leads to smaller sound velocities; its broken-mirror symmetry allows more ZA phonon scattering; and the relatively-free vibration of dangling oxygen atoms in PO gives rise to additional scattering resulting in further reduction in the phonon lifetime. These results can be verified by the fact that PO has larger phase space for three-phonon processes than phosphorene. Furthermore we show that the thermal conductivity of PO can be optimized by controlling its size or its phonon mean free path, indicating that PO can be a promising candidate for low-dimensional thermoelectric devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-41696-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7495758", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Low Lattice Thermal Conductivity of a Two-Dimensional Phosphorene Oxide", 
        "pagination": "5149", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "32edd461771bdbb294c3f373417636b9caa7aa30d90d4a86662f04f0cfab0b99"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30914726"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-41696-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112983834"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-41696-y", 
          "https://app.dimensions.ai/details/publication/pub.1112983834"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-41696-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41696-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41696-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41696-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41696-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      21 PREDICATES      84 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-41696-y schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nc0fa27ffa30a41fe90d4a87da08d449e
    4 schema:citation sg:pub.10.1038/35098012
    5 sg:pub.10.1038/nature06458
    6 sg:pub.10.1038/nature13184
    7 sg:pub.10.1038/nmat2090
    8 sg:pub.10.1038/nmat3568
    9 sg:pub.10.1038/s41699-017-0007-5
    10 sg:pub.10.1038/srep08501
    11 sg:pub.10.1038/srep20225
    12 https://doi.org/10.1002/adfm.201404294
    13 https://doi.org/10.1016/0921-4526(95)00016-3
    14 https://doi.org/10.1016/j.cpc.2014.02.015
    15 https://doi.org/10.1016/j.scriptamat.2015.07.021
    16 https://doi.org/10.1016/s0081-1947(08)60551-2
    17 https://doi.org/10.1021/acs.nanolett.6b01536
    18 https://doi.org/10.1021/jp5079357
    19 https://doi.org/10.1021/nl502865s
    20 https://doi.org/10.1021/nl5032293
    21 https://doi.org/10.1021/nl504257q
    22 https://doi.org/10.1021/nn405826k
    23 https://doi.org/10.1021/nn501226z
    24 https://doi.org/10.1039/c4cp04858j
    25 https://doi.org/10.1039/c4nr05384b
    26 https://doi.org/10.1039/c5nr03577e
    27 https://doi.org/10.1039/c5ra19747c
    28 https://doi.org/10.1063/1.1345515
    29 https://doi.org/10.1063/1.4868132
    30 https://doi.org/10.1063/1.4878395
    31 https://doi.org/10.1063/1.4905540
    32 https://doi.org/10.1063/1.4922118
    33 https://doi.org/10.1073/pnas.93.15.7436
    34 https://doi.org/10.1088/0953-8984/20/16/165209
    35 https://doi.org/10.1088/2053-1583/aa57fc
    36 https://doi.org/10.1103/physrev.140.a1133
    37 https://doi.org/10.1103/physrevb.28.4847
    38 https://doi.org/10.1103/physrevb.47.12727
    39 https://doi.org/10.1103/physrevb.47.16631
    40 https://doi.org/10.1103/physrevb.47.558
    41 https://doi.org/10.1103/physrevb.50.17953
    42 https://doi.org/10.1103/physrevb.54.11169
    43 https://doi.org/10.1103/physrevb.59.1758
    44 https://doi.org/10.1103/physrevb.79.155413
    45 https://doi.org/10.1103/physrevb.82.115427
    46 https://doi.org/10.1103/physrevb.84.075471
    47 https://doi.org/10.1103/physrevb.84.085409
    48 https://doi.org/10.1103/physrevb.84.155421
    49 https://doi.org/10.1103/physrevb.86.174307
    50 https://doi.org/10.1103/physrevb.87.115418
    51 https://doi.org/10.1103/physrevb.89.035422
    52 https://doi.org/10.1103/physrevb.89.035438
    53 https://doi.org/10.1103/physrevb.90.214302
    54 https://doi.org/10.1103/physrevb.91.085407
    55 https://doi.org/10.1103/physrevb.91.235419
    56 https://doi.org/10.1103/physrevlett.77.3865
    57 https://doi.org/10.1103/physrevlett.84.4613
    58 https://doi.org/10.1126/science.1093164
    59 schema:datePublished 2019-12
    60 schema:datePublishedReg 2019-12-01
    61 schema:description A fundamental understanding of the phonon transport mechanism is important for optimizing the efficiency of thermoelectric devices. In this study, we investigate the thermal transport properties of the oxidized form of phosphorene called phosphorene oxide (PO) by solving phonon Boltzmann transport equation based on first-principles density functional theory. We reveal that PO exhibits a much lower thermal conductivity (2.42-7.08 W/mK at 300 K) than its pristine counterpart as well as other two-dimensional materials. To comprehend the physical origin of such low thermal conductivity, we scrutinize the contribution of each phonon branch to the thermal conductivity by evaluating various mode-dependent quantities including Grüneisen parameters, anharmonic three-phonon scattering rate, and phase space of three-phonon scattering processes. Our results show that its flexible puckered structure of PO leads to smaller sound velocities; its broken-mirror symmetry allows more ZA phonon scattering; and the relatively-free vibration of dangling oxygen atoms in PO gives rise to additional scattering resulting in further reduction in the phonon lifetime. These results can be verified by the fact that PO has larger phase space for three-phonon processes than phosphorene. Furthermore we show that the thermal conductivity of PO can be optimized by controlling its size or its phonon mean free path, indicating that PO can be a promising candidate for low-dimensional thermoelectric devices.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree true
    65 schema:isPartOf N6fe2559cb05a425986841b95986b7c4b
    66 N94333fc27b824823850c070e5f90a3ed
    67 sg:journal.1045337
    68 schema:name Low Lattice Thermal Conductivity of a Two-Dimensional Phosphorene Oxide
    69 schema:pagination 5149
    70 schema:productId N058308834f354f90ab7c297e39e7f510
    71 Naf4bda66be2d4536ac46f09bf8fda4f2
    72 Nd30e7897c2f248ae95547b7e26d32fdb
    73 Nd7553cd59fb44fbc84da712526a4a040
    74 Nfe12b4cdb97a490e99a74bcc72e39aae
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112983834
    76 https://doi.org/10.1038/s41598-019-41696-y
    77 schema:sdDatePublished 2019-04-11T13:56
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N5fee0a39678e4e7a95db4238938ff056
    80 schema:url https://www.nature.com/articles/s41598-019-41696-y
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N058308834f354f90ab7c297e39e7f510 schema:name doi
    85 schema:value 10.1038/s41598-019-41696-y
    86 rdf:type schema:PropertyValue
    87 N46f25370c4364fc8a01560760e970a41 schema:affiliation https://www.grid.ac/institutes/grid.249961.1
    88 schema:familyName Kang
    89 schema:givenName Seoung-Hun
    90 rdf:type schema:Person
    91 N5fee0a39678e4e7a95db4238938ff056 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N6fe2559cb05a425986841b95986b7c4b schema:volumeNumber 9
    94 rdf:type schema:PublicationVolume
    95 N94333fc27b824823850c070e5f90a3ed schema:issueNumber 1
    96 rdf:type schema:PublicationIssue
    97 Nae73ff0fc94341d38ae80a2c9c87859b schema:affiliation https://www.grid.ac/institutes/grid.289247.2
    98 schema:familyName Kwon
    99 schema:givenName Young-Kyun
    100 rdf:type schema:Person
    101 Naeb0aadfe6ec4a9d9848f99c94179aa5 rdf:first Nae73ff0fc94341d38ae80a2c9c87859b
    102 rdf:rest rdf:nil
    103 Naf4bda66be2d4536ac46f09bf8fda4f2 schema:name dimensions_id
    104 schema:value pub.1112983834
    105 rdf:type schema:PropertyValue
    106 Nb437cf658cc0440f91518f0e26f3b08b rdf:first N46f25370c4364fc8a01560760e970a41
    107 rdf:rest Naeb0aadfe6ec4a9d9848f99c94179aa5
    108 Nc0fa27ffa30a41fe90d4a87da08d449e rdf:first Nf7d236d0b91f44b895df65d7e3c4a8d5
    109 rdf:rest Nb437cf658cc0440f91518f0e26f3b08b
    110 Nd30e7897c2f248ae95547b7e26d32fdb schema:name pubmed_id
    111 schema:value 30914726
    112 rdf:type schema:PropertyValue
    113 Nd7553cd59fb44fbc84da712526a4a040 schema:name readcube_id
    114 schema:value 32edd461771bdbb294c3f373417636b9caa7aa30d90d4a86662f04f0cfab0b99
    115 rdf:type schema:PropertyValue
    116 Nf7d236d0b91f44b895df65d7e3c4a8d5 schema:affiliation https://www.grid.ac/institutes/grid.289247.2
    117 schema:familyName Lee
    118 schema:givenName Seungjun
    119 rdf:type schema:Person
    120 Nfe12b4cdb97a490e99a74bcc72e39aae schema:name nlm_unique_id
    121 schema:value 101563288
    122 rdf:type schema:PropertyValue
    123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Engineering
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Materials Engineering
    128 rdf:type schema:DefinedTerm
    129 sg:grant.7495758 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41696-y
    130 rdf:type schema:MonetaryGrant
    131 sg:journal.1045337 schema:issn 2045-2322
    132 schema:name Scientific Reports
    133 rdf:type schema:Periodical
    134 sg:pub.10.1038/35098012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014934672
    135 https://doi.org/10.1038/35098012
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/nature06458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033493248
    138 https://doi.org/10.1038/nature06458
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nature13184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012146906
    141 https://doi.org/10.1038/nature13184
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/nmat2090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014989328
    144 https://doi.org/10.1038/nmat2090
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nmat3568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024247269
    147 https://doi.org/10.1038/nmat3568
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/s41699-017-0007-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084768667
    150 https://doi.org/10.1038/s41699-017-0007-5
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/srep08501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005318515
    153 https://doi.org/10.1038/srep08501
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/srep20225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008928746
    156 https://doi.org/10.1038/srep20225
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1002/adfm.201404294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034358323
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/0921-4526(95)00016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030923705
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.cpc.2014.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047040569
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.scriptamat.2015.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052222149
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/s0081-1947(08)60551-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042332056
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1021/acs.nanolett.6b01536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121519
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1021/jp5079357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056102814
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1021/nl502865s schema:sameAs https://app.dimensions.ai/details/publication/pub.1048466635
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1021/nl5032293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001132327
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1021/nl504257q schema:sameAs https://app.dimensions.ai/details/publication/pub.1036033035
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1021/nn405826k schema:sameAs https://app.dimensions.ai/details/publication/pub.1006791107
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1021/nn501226z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009826879
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1039/c4cp04858j schema:sameAs https://app.dimensions.ai/details/publication/pub.1000181318
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1039/c4nr05384b schema:sameAs https://app.dimensions.ai/details/publication/pub.1007642521
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1039/c5nr03577e schema:sameAs https://app.dimensions.ai/details/publication/pub.1019795078
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1039/c5ra19747c schema:sameAs https://app.dimensions.ai/details/publication/pub.1026941205
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1063/1.1345515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697140
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1063/1.4868132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037841774
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1063/1.4878395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026786276
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1063/1.4905540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013402481
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1063/1.4922118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026353529
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1073/pnas.93.15.7436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005880290
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1088/0953-8984/20/16/165209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008674380
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1088/2053-1583/aa57fc schema:sameAs https://app.dimensions.ai/details/publication/pub.1059182985
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1103/physrev.140.a1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431417
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1103/physrevb.28.4847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533463
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1103/physrevb.47.12727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565088
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1103/physrevb.47.16631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565694
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1103/physrevb.79.155413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060628089
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1103/physrevb.82.115427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633736
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1103/physrevb.84.075471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047601400
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1103/physrevb.84.085409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636611
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1103/physrevb.84.155421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637144
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1103/physrevb.86.174307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640293
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1103/physrevb.87.115418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008415674
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1103/physrevb.89.035422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875554
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1103/physrevb.89.035438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002470625
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1103/physrevb.90.214302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025828535
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1103/physrevb.91.085407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034283627
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1103/physrevb.91.235419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013924011
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1103/physrevlett.84.4613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028563783
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1126/science.1093164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031894123
    251 rdf:type schema:CreativeWork
    252 https://www.grid.ac/institutes/grid.249961.1 schema:alternateName Korea Institute for Advanced Study
    253 schema:name Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, 02447, Seoul, Korea
    254 Korea Institute for Advanced Study (KIAS), 02455, Seoul, Korea
    255 rdf:type schema:Organization
    256 https://www.grid.ac/institutes/grid.289247.2 schema:alternateName Kyung Hee University
    257 schema:name Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, 02447, Seoul, Korea
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...