From Louvain to Leiden: guaranteeing well-connected communities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

V. A. Traag, L. Waltman, N. J. van Eck

ABSTRACT

Community detection is often used to understand the structure of large and complex networks. One of the most popular algorithms for uncovering community structure is the so-called Louvain algorithm. We show that this algorithm has a major defect that largely went unnoticed until now: the Louvain algorithm may yield arbitrarily badly connected communities. In the worst case, communities may even be disconnected, especially when running the algorithm iteratively. In our experimental analysis, we observe that up to 25% of the communities are badly connected and up to 16% are disconnected. To address this problem, we introduce the Leiden algorithm. We prove that the Leiden algorithm yields communities that are guaranteed to be connected. In addition, we prove that, when the Leiden algorithm is applied iteratively, it converges to a partition in which all subsets of all communities are locally optimally assigned. Furthermore, by relying on a fast local move approach, the Leiden algorithm runs faster than the Louvain algorithm. We demonstrate the performance of the Leiden algorithm for several benchmark and real-world networks. We find that the Leiden algorithm is faster than the Louvain algorithm and uncovers better partitions, in addition to providing explicit guarantees. More... »

PAGES

5233

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41695-z

DOI

http://dx.doi.org/10.1038/s41598-019-41695-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112982066

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30914743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leiden University", 
          "id": "https://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Centre for Science and Technology Studies, Leiden University, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Traag", 
        "givenName": "V. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University", 
          "id": "https://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Centre for Science and Technology Studies, Leiden University, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waltman", 
        "givenName": "L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University", 
          "id": "https://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Centre for Science and Technology Studies, Leiden University, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Eck", 
        "givenName": "N. J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrn2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004953014", 
          "https://doi.org/10.1038/nrn2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.027104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005495710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.027104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005495710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.032801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016611839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.032801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016611839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.046110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.046110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1963190.1970376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019343192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.23734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019790832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023359647", 
          "https://doi.org/10.1038/srep30750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605965104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028061681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029327122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029327122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.016110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036285600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.016110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036285600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.056117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.056117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.22748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036746088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2013-40829-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042305618", 
          "https://doi.org/10.1140/epjb/e2013-40829-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.016114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052529617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.016114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052529617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.190689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17706/ijcee.2016.8.3.207-218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068441840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2992785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084227892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/208819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092408218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/208819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092408218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/208819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092408218"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Community detection is often used to understand the structure of large and complex networks. One of the most popular algorithms for uncovering community structure is the so-called Louvain algorithm. We show that this algorithm has a major defect that largely went unnoticed until now: the Louvain algorithm may yield arbitrarily badly connected communities. In the worst case, communities may even be disconnected, especially when running the algorithm iteratively. In our experimental analysis, we observe that up to 25% of the communities are badly connected and up to 16% are disconnected. To address this problem, we introduce the Leiden algorithm. We prove that the Leiden algorithm yields communities that are guaranteed to be connected. In addition, we prove that, when the Leiden algorithm is applied iteratively, it converges to a partition in which all subsets of all communities are locally optimally assigned. Furthermore, by relying on a fast local move approach, the Leiden algorithm runs faster than the Louvain algorithm. We demonstrate the performance of the Leiden algorithm for several benchmark and real-world networks. We find that the Leiden algorithm is faster than the Louvain algorithm and uncovers better partitions, in addition to providing explicit guarantees.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41695-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "From Louvain to Leiden: guaranteeing well-connected communities", 
    "pagination": "5233", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "07645a2a3638e989c981aca03662ce1a4cc7846a463b6dbd38a331c4e890e831"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30914743"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41695-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112982066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41695-z", 
      "https://app.dimensions.ai/details/publication/pub.1112982066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41695-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41695-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41695-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41695-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41695-z'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41695-z schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N4ab5617efa8b4a279544c21b046b47b8
4 schema:citation sg:pub.10.1038/nature03288
5 sg:pub.10.1038/nrn2575
6 sg:pub.10.1038/srep30750
7 sg:pub.10.1140/epjb/e2013-40829-0
8 https://doi.org/10.1002/asi.22748
9 https://doi.org/10.1002/asi.23734
10 https://doi.org/10.1016/j.physrep.2009.11.002
11 https://doi.org/10.1073/pnas.0605965104
12 https://doi.org/10.1088/1742-5468/2008/10/p10008
13 https://doi.org/10.1101/208819
14 https://doi.org/10.1103/physreve.69.026113
15 https://doi.org/10.1103/physreve.70.066111
16 https://doi.org/10.1103/physreve.72.027104
17 https://doi.org/10.1103/physreve.74.016110
18 https://doi.org/10.1103/physreve.74.036104
19 https://doi.org/10.1103/physreve.76.036106
20 https://doi.org/10.1103/physreve.78.046110
21 https://doi.org/10.1103/physreve.80.056117
22 https://doi.org/10.1103/physreve.81.046106
23 https://doi.org/10.1103/physreve.84.016114
24 https://doi.org/10.1103/physreve.92.032801
25 https://doi.org/10.1109/tkde.2007.190689
26 https://doi.org/10.1145/1963190.1970376
27 https://doi.org/10.1145/2992785
28 https://doi.org/10.17706/ijcee.2016.8.3.207-218
29 schema:datePublished 2019-12
30 schema:datePublishedReg 2019-12-01
31 schema:description Community detection is often used to understand the structure of large and complex networks. One of the most popular algorithms for uncovering community structure is the so-called Louvain algorithm. We show that this algorithm has a major defect that largely went unnoticed until now: the Louvain algorithm may yield arbitrarily badly connected communities. In the worst case, communities may even be disconnected, especially when running the algorithm iteratively. In our experimental analysis, we observe that up to 25% of the communities are badly connected and up to 16% are disconnected. To address this problem, we introduce the Leiden algorithm. We prove that the Leiden algorithm yields communities that are guaranteed to be connected. In addition, we prove that, when the Leiden algorithm is applied iteratively, it converges to a partition in which all subsets of all communities are locally optimally assigned. Furthermore, by relying on a fast local move approach, the Leiden algorithm runs faster than the Louvain algorithm. We demonstrate the performance of the Leiden algorithm for several benchmark and real-world networks. We find that the Leiden algorithm is faster than the Louvain algorithm and uncovers better partitions, in addition to providing explicit guarantees.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf Ne38b0fca7fbf457d889d419eb3376258
36 Neca6223fde5d46e4a67b7224fcc1668f
37 sg:journal.1045337
38 schema:name From Louvain to Leiden: guaranteeing well-connected communities
39 schema:pagination 5233
40 schema:productId N60b941c734604fa1a5c5303fc6301024
41 N729429275cd644e49c1655eb1b17bf6e
42 N9fbe6b9549ee41638c4ef78e97d738bc
43 Nb1da68cb706d41cd8595b49a1dda80eb
44 Nd54bb7286f694267a52405eae931c1ae
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112982066
46 https://doi.org/10.1038/s41598-019-41695-z
47 schema:sdDatePublished 2019-04-11T13:54
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N1576f10bb6c344d38f9789904d528e46
50 schema:url https://www.nature.com/articles/s41598-019-41695-z
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1576f10bb6c344d38f9789904d528e46 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N15b84b97c82d4d8a8cba8a159b528ee7 rdf:first Nf50d00c3408c4f508cfd6ef7fd9ebf9c
57 rdf:rest rdf:nil
58 N4ab5617efa8b4a279544c21b046b47b8 rdf:first Nb9863a3c824f430f9f00851744262f51
59 rdf:rest Na4d488b4b4794b899cd645567cf9431f
60 N60b941c734604fa1a5c5303fc6301024 schema:name nlm_unique_id
61 schema:value 101563288
62 rdf:type schema:PropertyValue
63 N729429275cd644e49c1655eb1b17bf6e schema:name readcube_id
64 schema:value 07645a2a3638e989c981aca03662ce1a4cc7846a463b6dbd38a331c4e890e831
65 rdf:type schema:PropertyValue
66 N75fbb66afc1c46caa206475af4e3bc5e schema:affiliation https://www.grid.ac/institutes/grid.5132.5
67 schema:familyName Waltman
68 schema:givenName L.
69 rdf:type schema:Person
70 N9fbe6b9549ee41638c4ef78e97d738bc schema:name dimensions_id
71 schema:value pub.1112982066
72 rdf:type schema:PropertyValue
73 Na4d488b4b4794b899cd645567cf9431f rdf:first N75fbb66afc1c46caa206475af4e3bc5e
74 rdf:rest N15b84b97c82d4d8a8cba8a159b528ee7
75 Nb1da68cb706d41cd8595b49a1dda80eb schema:name doi
76 schema:value 10.1038/s41598-019-41695-z
77 rdf:type schema:PropertyValue
78 Nb9863a3c824f430f9f00851744262f51 schema:affiliation https://www.grid.ac/institutes/grid.5132.5
79 schema:familyName Traag
80 schema:givenName V. A.
81 rdf:type schema:Person
82 Nd54bb7286f694267a52405eae931c1ae schema:name pubmed_id
83 schema:value 30914743
84 rdf:type schema:PropertyValue
85 Ne38b0fca7fbf457d889d419eb3376258 schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 Neca6223fde5d46e4a67b7224fcc1668f schema:volumeNumber 9
88 rdf:type schema:PublicationVolume
89 Nf50d00c3408c4f508cfd6ef7fd9ebf9c schema:affiliation https://www.grid.ac/institutes/grid.5132.5
90 schema:familyName van Eck
91 schema:givenName N. J.
92 rdf:type schema:Person
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
97 schema:name Computation Theory and Mathematics
98 rdf:type schema:DefinedTerm
99 sg:journal.1045337 schema:issn 2045-2322
100 schema:name Scientific Reports
101 rdf:type schema:Periodical
102 sg:pub.10.1038/nature03288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416471
103 https://doi.org/10.1038/nature03288
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
106 https://doi.org/10.1038/nrn2575
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/srep30750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023359647
109 https://doi.org/10.1038/srep30750
110 rdf:type schema:CreativeWork
111 sg:pub.10.1140/epjb/e2013-40829-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042305618
112 https://doi.org/10.1140/epjb/e2013-40829-0
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/asi.22748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036746088
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/asi.23734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019790832
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1073/pnas.0605965104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028061681
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1101/208819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092408218
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physreve.70.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552384
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physreve.72.027104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005495710
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physreve.74.016110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285600
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreve.74.036104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120999
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreve.76.036106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029327122
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreve.78.046110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016699541
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreve.80.056117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660715
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physreve.81.046106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740405
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physreve.84.016114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052529617
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreve.92.032801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016611839
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tkde.2007.190689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661739
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/1963190.1970376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019343192
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/2992785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084227892
153 rdf:type schema:CreativeWork
154 https://doi.org/10.17706/ijcee.2016.8.3.207-218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068441840
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.5132.5 schema:alternateName Leiden University
157 schema:name Centre for Science and Technology Studies, Leiden University, Leiden, The Netherlands
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...