Identifying progressive CKD from healthy population using Bayesian network and artificial intelligence: A worksite-based cohort study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Eiichiro Kanda, Yoshihiko Kanno, Fuminori Katsukawa

ABSTRACT

Identifying progressive early chronic kidney disease (CKD) patients at a health checkup is a good opportunity to improve their prognosis. However, it is difficult to identify them using common health tests. This worksite-based cohort study for 7 years in Japan (n = 7465) was conducted to evaluate the progression of CKD. The outcome was aggravation of the KDIGO prognostic category of CKD 7 years later. The subjects were male, 59.1%; age, 50.1 ± 6.3 years; and eGFR, 79 ± 14.4 mL/min/1.73 m2. The number of subjects showing CKD progression started to increase from 3 years later. Vector analysis showed that CKD stage G1 A1 was more progressive than CKD stage G2 A1. Bayesian networks showed that the time-series changes in the prognostic category of CKD were related to the outcome. Support vector machines including time-series data of the prognostic category of CKD from 3 years later detected the high possibility of the outcome not only in subjects at very high risks but also in those at low risks at baseline. In conclusion, after the evaluation of kidney function at a health checkup, it is necessary to follow up not only patients at high risks but also patients at low risks at baseline for 3 years and longer. More... »

PAGES

5082

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41663-7

DOI

http://dx.doi.org/10.1038/s41598-019-41663-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112966812

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30911092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kawasaki Medical School", 
          "id": "https://www.grid.ac/institutes/grid.415086.e", 
          "name": [
            "Medical Science, Kawasaki Medical School, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanda", 
        "givenName": "Eiichiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410793.8", 
          "name": [
            "Department of Nephrology, Tokyo Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanno", 
        "givenName": "Yoshihiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Sports Medical Research Center, Keio University, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsukawa", 
        "givenName": "Fuminori", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1053/j.ajkd.2008.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000437042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-009-0199-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018033692", 
          "https://doi.org/10.1007/s10157-009-0199-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2014.01.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020039206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-016-1309-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021800899", 
          "https://doi.org/10.1007/s10157-016-1309-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-016-1309-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021800899", 
          "https://doi.org/10.1007/s10157-016-1309-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.298.17.2038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022327258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0151422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023245404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2014.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032256125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1291/hypres.31.433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036693970", 
          "https://doi.org/10.1291/hypres.31.433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ki.5002017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041327334", 
          "https://doi.org/10.1038/sj.ki.5002017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2011.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044206817", 
          "https://doi.org/10.1038/hr.2011.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2014.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044401479", 
          "https://doi.org/10.1038/hr.2014.20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.15792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048796100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-159-12-201312170-00726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073713728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-017-1463-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091502680", 
          "https://doi.org/10.1007/s10157-017-1463-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-017-1463-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091502680", 
          "https://doi.org/10.1007/s10157-017-1463-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrdp.2017.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092890667", 
          "https://doi.org/10.1038/nrdp.2017.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s41100-017-0142-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100220695", 
          "https://doi.org/10.1186/s41100-017-0142-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jdi.12810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101782451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-018-1615-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105570813", 
          "https://doi.org/10.1007/s10157-018-1615-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10157-018-1615-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105570813", 
          "https://doi.org/10.1007/s10157-018-1615-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Identifying progressive early chronic kidney disease (CKD) patients at a health checkup is a good opportunity to improve their prognosis. However, it is difficult to identify them using common health tests. This worksite-based cohort study for 7 years in Japan (n\u2009=\u20097465) was conducted to evaluate the progression of CKD. The outcome was aggravation of the KDIGO prognostic category of CKD 7 years later. The subjects were male, 59.1%; age, 50.1\u2009\u00b1\u20096.3 years; and eGFR, 79\u2009\u00b1\u200914.4\u2009mL/min/1.73\u2009m2. The number of subjects showing CKD progression started to increase from 3 years later. Vector analysis showed that CKD stage G1 A1 was more progressive than CKD stage G2 A1. Bayesian networks showed that the time-series changes in the prognostic category of CKD were related to the outcome. Support vector machines including time-series data of the prognostic category of CKD from 3 years later detected the high possibility of the outcome not only in subjects at very high risks but also in those at low risks at baseline. In conclusion, after the evaluation of kidney function at a health checkup, it is necessary to follow up not only patients at high risks but also patients at low risks at baseline for 3 years and longer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41663-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Identifying progressive CKD from healthy population using Bayesian network and artificial intelligence: A worksite-based cohort study", 
    "pagination": "5082", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10bc0c553602c358118edf8ac38339ca826cf08b72b8ad7eaf54a72a03cc37b9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30911092"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41663-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112966812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41663-7", 
      "https://app.dimensions.ai/details/publication/pub.1112966812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41663-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41663-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41663-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41663-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41663-7'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41663-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N282964058ca849a4a559738a2634ef59
4 schema:citation sg:pub.10.1007/s10157-009-0199-x
5 sg:pub.10.1007/s10157-016-1309-1
6 sg:pub.10.1007/s10157-017-1463-0
7 sg:pub.10.1007/s10157-018-1615-x
8 sg:pub.10.1038/hr.2011.96
9 sg:pub.10.1038/hr.2014.20
10 sg:pub.10.1038/nrdp.2017.88
11 sg:pub.10.1038/sj.ki.5002017
12 sg:pub.10.1186/s41100-017-0142-7
13 sg:pub.10.1291/hypres.31.433
14 https://doi.org/10.1001/jama.298.17.2038
15 https://doi.org/10.1053/j.ajkd.2008.12.034
16 https://doi.org/10.1053/j.ajkd.2014.01.416
17 https://doi.org/10.1053/j.ajkd.2014.07.030
18 https://doi.org/10.1111/jdi.12810
19 https://doi.org/10.1371/journal.pone.0151422
20 https://doi.org/10.5551/jat.15792
21 https://doi.org/10.7326/0003-4819-159-12-201312170-00726
22 schema:datePublished 2019-12
23 schema:datePublishedReg 2019-12-01
24 schema:description Identifying progressive early chronic kidney disease (CKD) patients at a health checkup is a good opportunity to improve their prognosis. However, it is difficult to identify them using common health tests. This worksite-based cohort study for 7 years in Japan (n = 7465) was conducted to evaluate the progression of CKD. The outcome was aggravation of the KDIGO prognostic category of CKD 7 years later. The subjects were male, 59.1%; age, 50.1 ± 6.3 years; and eGFR, 79 ± 14.4 mL/min/1.73 m<sup>2</sup>. The number of subjects showing CKD progression started to increase from 3 years later. Vector analysis showed that CKD stage G1 A1 was more progressive than CKD stage G2 A1. Bayesian networks showed that the time-series changes in the prognostic category of CKD were related to the outcome. Support vector machines including time-series data of the prognostic category of CKD from 3 years later detected the high possibility of the outcome not only in subjects at very high risks but also in those at low risks at baseline. In conclusion, after the evaluation of kidney function at a health checkup, it is necessary to follow up not only patients at high risks but also patients at low risks at baseline for 3 years and longer.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N0310be32e3534653866a110375e17c0e
29 N03e0902925af4f1e99bc06c712f12f86
30 sg:journal.1045337
31 schema:name Identifying progressive CKD from healthy population using Bayesian network and artificial intelligence: A worksite-based cohort study
32 schema:pagination 5082
33 schema:productId N13c4a038af7c4b9cac09a66f4a5b3545
34 N3a62025d0828410ab50a713adb94c5fd
35 N3c57a2396e414de8812973ce6f7b1e85
36 N4a1175df09864f9ca4475af7d48aaa67
37 N62bf2c75a7e14675ac2e0c166918e783
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112966812
39 https://doi.org/10.1038/s41598-019-41663-7
40 schema:sdDatePublished 2019-04-11T13:50
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N87f156b3cc884ddf8b03b63f1805f781
43 schema:url https://www.nature.com/articles/s41598-019-41663-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0310be32e3534653866a110375e17c0e schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N03e0902925af4f1e99bc06c712f12f86 schema:volumeNumber 9
50 rdf:type schema:PublicationVolume
51 N05318eb34c674b698c2a156d6a2d3eb8 schema:affiliation https://www.grid.ac/institutes/grid.410793.8
52 schema:familyName Kanno
53 schema:givenName Yoshihiko
54 rdf:type schema:Person
55 N13c4a038af7c4b9cac09a66f4a5b3545 schema:name readcube_id
56 schema:value 10bc0c553602c358118edf8ac38339ca826cf08b72b8ad7eaf54a72a03cc37b9
57 rdf:type schema:PropertyValue
58 N282964058ca849a4a559738a2634ef59 rdf:first N35a4fdf2de9447748ed840009a46d52b
59 rdf:rest Nfe83d8add0304bcab4da4dca8e1a867c
60 N35a4fdf2de9447748ed840009a46d52b schema:affiliation https://www.grid.ac/institutes/grid.415086.e
61 schema:familyName Kanda
62 schema:givenName Eiichiro
63 rdf:type schema:Person
64 N3a62025d0828410ab50a713adb94c5fd schema:name pubmed_id
65 schema:value 30911092
66 rdf:type schema:PropertyValue
67 N3c57a2396e414de8812973ce6f7b1e85 schema:name nlm_unique_id
68 schema:value 101563288
69 rdf:type schema:PropertyValue
70 N4a1175df09864f9ca4475af7d48aaa67 schema:name doi
71 schema:value 10.1038/s41598-019-41663-7
72 rdf:type schema:PropertyValue
73 N62bf2c75a7e14675ac2e0c166918e783 schema:name dimensions_id
74 schema:value pub.1112966812
75 rdf:type schema:PropertyValue
76 N87f156b3cc884ddf8b03b63f1805f781 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N98c6236a2d674acabed36f7bfcdcb5ae rdf:first Nb933f9125734479fa58e75933df1d0c0
79 rdf:rest rdf:nil
80 Nb933f9125734479fa58e75933df1d0c0 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
81 schema:familyName Katsukawa
82 schema:givenName Fuminori
83 rdf:type schema:Person
84 Nfe83d8add0304bcab4da4dca8e1a867c rdf:first N05318eb34c674b698c2a156d6a2d3eb8
85 rdf:rest N98c6236a2d674acabed36f7bfcdcb5ae
86 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
87 schema:name Medical and Health Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
90 schema:name Clinical Sciences
91 rdf:type schema:DefinedTerm
92 sg:journal.1045337 schema:issn 2045-2322
93 schema:name Scientific Reports
94 rdf:type schema:Periodical
95 sg:pub.10.1007/s10157-009-0199-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033692
96 https://doi.org/10.1007/s10157-009-0199-x
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10157-016-1309-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021800899
99 https://doi.org/10.1007/s10157-016-1309-1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10157-017-1463-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091502680
102 https://doi.org/10.1007/s10157-017-1463-0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10157-018-1615-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105570813
105 https://doi.org/10.1007/s10157-018-1615-x
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/hr.2011.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044206817
108 https://doi.org/10.1038/hr.2011.96
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/hr.2014.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044401479
111 https://doi.org/10.1038/hr.2014.20
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nrdp.2017.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092890667
114 https://doi.org/10.1038/nrdp.2017.88
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/sj.ki.5002017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041327334
117 https://doi.org/10.1038/sj.ki.5002017
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/s41100-017-0142-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100220695
120 https://doi.org/10.1186/s41100-017-0142-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1291/hypres.31.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036693970
123 https://doi.org/10.1291/hypres.31.433
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1001/jama.298.17.2038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022327258
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1053/j.ajkd.2008.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000437042
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1053/j.ajkd.2014.01.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020039206
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1053/j.ajkd.2014.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032256125
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1111/jdi.12810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101782451
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1371/journal.pone.0151422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023245404
136 rdf:type schema:CreativeWork
137 https://doi.org/10.5551/jat.15792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048796100
138 rdf:type schema:CreativeWork
139 https://doi.org/10.7326/0003-4819-159-12-201312170-00726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073713728
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
142 schema:name Sports Medical Research Center, Keio University, Kanagawa, Japan
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.410793.8 schema:alternateName Tokyo Medical University
145 schema:name Department of Nephrology, Tokyo Medical University, Tokyo, Japan
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.415086.e schema:alternateName Kawasaki Medical School
148 schema:name Medical Science, Kawasaki Medical School, Okayama, Japan
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...