Mutual interaction of red blood cells influenced by nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tatiana Avsievich, Alexey Popov, Alexander Bykov, Igor Meglinski

ABSTRACT

Despite extensive studies on different types of nanoparticles as potential drug carriers, the application of red blood cells (RBCs) as natural transport agents for systemic drug delivery is considered a new paradigm in modern medicine and possesses great potential. There is a lack of studies on the influence of drug carriers of different compositions on RBCs, especially regarding their potential impact on human health. Here, we apply conventional microscopy to observe the formation of RBC aggregates and optical tweezers to quantitatively assess the mutual interaction of RBCs incubated with inorganic and polymeric nanoparticles. Scanning electron microscopy is utilized for direct observation of nanoparticle localization on RBC membranes. The experiments are performed in a platelet-free blood plasma mimicking the RBC natural environment. We show that nanodiamonds influence mutual RBC interactions more antagonistically than other nanoparticles, resulting in higher aggregation forces and the formation of larger cell aggregates. In contrast, polymeric particles do not cause anomalous RBC aggregation. The results emphasize the application of optical tweezers for the direct quantitative assessment of the mutual interaction of RBCs influenced by nanomaterials. More... »

PAGES

5147

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-41643-x

    DOI

    http://dx.doi.org/10.1038/s41598-019-41643-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112985833

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30914741


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oulu", 
              "id": "https://www.grid.ac/institutes/grid.10858.34", 
              "name": [
                "Opto-Electronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Avsievich", 
            "givenName": "Tatiana", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oulu", 
              "id": "https://www.grid.ac/institutes/grid.10858.34", 
              "name": [
                "Opto-Electronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Popov", 
            "givenName": "Alexey", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oulu", 
              "id": "https://www.grid.ac/institutes/grid.10858.34", 
              "name": [
                "Opto-Electronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bykov", 
            "givenName": "Alexander", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow Engineering Physics Institute", 
              "id": "https://www.grid.ac/institutes/grid.183446.c", 
              "name": [
                "Opto-Electronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland", 
                "Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050, Tomsk, Russia", 
                "National Research Nuclear University \u2013 MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meglinski", 
            "givenName": "Igor", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-71790-1_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001211855", 
              "https://doi.org/10.1007/978-3-642-71790-1_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4tx00138a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008819365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jbo.21.3.035001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009558531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fct.2008.09.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016854594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jconrel.2016.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018653433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biomaterials.2010.12.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021283320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12013-015-0705-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021924330", 
              "https://doi.org/10.1007/s12013-015-0705-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/330769a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023765266", 
              "https://doi.org/10.1038/330769a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(89)82841-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030013634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00249-006-0107-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032187500", 
              "https://doi.org/10.1007/s00249-006-0107-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00249-006-0107-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032187500", 
              "https://doi.org/10.1007/s00249-006-0107-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nano.2015.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038129125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0302-4598(00)00109-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040055585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-72027-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042197673", 
              "https://doi.org/10.1007/978-0-387-72027-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-72027-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042197673", 
              "https://doi.org/10.1007/978-0-387-72027-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addr.2016.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042506372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-85709-662-3.00011-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044996548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051411109", 
              "https://doi.org/10.1038/nmat2398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am300992x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055142532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am404860q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055144706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es0522635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055498778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es0522635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055498778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/tx500479m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056299418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1740347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057803139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.24.156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060773312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.24.156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060773312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstqe.2015.2477396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061337287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-19897-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100523040", 
              "https://doi.org/10.1038/s41598-018-19897-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.43.003921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106028714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1108596587", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Despite extensive studies on different types of nanoparticles as potential drug carriers, the application of red blood cells (RBCs) as natural transport agents for systemic drug delivery is considered a new paradigm in modern medicine and possesses great potential. There is a lack of studies on the influence of drug carriers of different compositions on RBCs, especially regarding their potential impact on human health. Here, we apply conventional microscopy to observe the formation of RBC aggregates and optical tweezers to quantitatively assess the mutual interaction of RBCs incubated with inorganic and polymeric nanoparticles. Scanning electron microscopy is utilized for direct observation of nanoparticle localization on RBC membranes. The experiments are performed in a platelet-free blood plasma mimicking the RBC natural environment. We show that nanodiamonds influence mutual RBC interactions more antagonistically than other nanoparticles, resulting in higher aggregation forces and the formation of larger cell aggregates. In contrast, polymeric particles do not cause anomalous RBC aggregation. The results emphasize the application of optical tweezers for the direct quantitative assessment of the mutual interaction of RBCs influenced by nanomaterials.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-41643-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4248626", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Mutual interaction of red blood cells influenced by nanoparticles", 
        "pagination": "5147", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6486a6169efdb2e6c96a5193ca5054abce1c4e9b8c552e234fe9d623d4b4fda2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30914741"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-41643-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112985833"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-41643-x", 
          "https://app.dimensions.ai/details/publication/pub.1112985833"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-41643-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41643-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41643-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41643-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41643-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-41643-x schema:about anzsrc-for:10
    2 anzsrc-for:1007
    3 schema:author N1a9eec222f494d5eb53f4775c36994d7
    4 schema:citation sg:pub.10.1007/978-0-387-72027-2
    5 sg:pub.10.1007/978-3-642-71790-1_16
    6 sg:pub.10.1007/s00249-006-0107-1
    7 sg:pub.10.1007/s12013-015-0705-6
    8 sg:pub.10.1038/330769a0
    9 sg:pub.10.1038/nmat2398
    10 sg:pub.10.1038/s41598-018-19897-8
    11 https://app.dimensions.ai/details/publication/pub.1108596587
    12 https://doi.org/10.1016/b978-0-85709-662-3.00011-7
    13 https://doi.org/10.1016/j.addr.2016.02.007
    14 https://doi.org/10.1016/j.biomaterials.2010.12.050
    15 https://doi.org/10.1016/j.fct.2008.09.012
    16 https://doi.org/10.1016/j.jconrel.2016.06.017
    17 https://doi.org/10.1016/j.nano.2015.05.005
    18 https://doi.org/10.1016/s0006-3495(89)82841-3
    19 https://doi.org/10.1016/s0302-4598(00)00109-4
    20 https://doi.org/10.1021/am300992x
    21 https://doi.org/10.1021/am404860q
    22 https://doi.org/10.1021/es0522635
    23 https://doi.org/10.1021/tx500479m
    24 https://doi.org/10.1039/c4tx00138a
    25 https://doi.org/10.1063/1.1740347
    26 https://doi.org/10.1103/physrevlett.24.156
    27 https://doi.org/10.1109/jstqe.2015.2477396
    28 https://doi.org/10.1117/1.jbo.21.3.035001
    29 https://doi.org/10.1364/ol.43.003921
    30 schema:datePublished 2019-12
    31 schema:datePublishedReg 2019-12-01
    32 schema:description Despite extensive studies on different types of nanoparticles as potential drug carriers, the application of red blood cells (RBCs) as natural transport agents for systemic drug delivery is considered a new paradigm in modern medicine and possesses great potential. There is a lack of studies on the influence of drug carriers of different compositions on RBCs, especially regarding their potential impact on human health. Here, we apply conventional microscopy to observe the formation of RBC aggregates and optical tweezers to quantitatively assess the mutual interaction of RBCs incubated with inorganic and polymeric nanoparticles. Scanning electron microscopy is utilized for direct observation of nanoparticle localization on RBC membranes. The experiments are performed in a platelet-free blood plasma mimicking the RBC natural environment. We show that nanodiamonds influence mutual RBC interactions more antagonistically than other nanoparticles, resulting in higher aggregation forces and the formation of larger cell aggregates. In contrast, polymeric particles do not cause anomalous RBC aggregation. The results emphasize the application of optical tweezers for the direct quantitative assessment of the mutual interaction of RBCs influenced by nanomaterials.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N090aef6724e54dd4ab6edaaac765b773
    37 N5e5fe9e93d7d42dab9f265beba65d520
    38 sg:journal.1045337
    39 schema:name Mutual interaction of red blood cells influenced by nanoparticles
    40 schema:pagination 5147
    41 schema:productId N0743192abf354b5d921ef7b5265058eb
    42 N1aaa80c771934b28ab37ce83ce2afa59
    43 N661db766d8ae4fcfbd37171a4980da9a
    44 Na651fa28a59d4a7ea44c6b451bd16270
    45 Ncb48d1e08e844ce09eb72be820bb0de6
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112985833
    47 https://doi.org/10.1038/s41598-019-41643-x
    48 schema:sdDatePublished 2019-04-11T13:52
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N3dc9461f4b1445df965657bb1b80fac0
    51 schema:url https://www.nature.com/articles/s41598-019-41643-x
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N03618562119649bd904876b727ac431e schema:affiliation https://www.grid.ac/institutes/grid.10858.34
    56 schema:familyName Avsievich
    57 schema:givenName Tatiana
    58 rdf:type schema:Person
    59 N0743192abf354b5d921ef7b5265058eb schema:name readcube_id
    60 schema:value 6486a6169efdb2e6c96a5193ca5054abce1c4e9b8c552e234fe9d623d4b4fda2
    61 rdf:type schema:PropertyValue
    62 N090aef6724e54dd4ab6edaaac765b773 schema:volumeNumber 9
    63 rdf:type schema:PublicationVolume
    64 N1778b9dc049543b19e8c0881a8bc53e6 rdf:first Nbbd4c8ada8314d7e9239c95171fc5809
    65 rdf:rest N647a2231bfd04520ba5cb92f148fa2ec
    66 N1a9eec222f494d5eb53f4775c36994d7 rdf:first N03618562119649bd904876b727ac431e
    67 rdf:rest N1778b9dc049543b19e8c0881a8bc53e6
    68 N1aaa80c771934b28ab37ce83ce2afa59 schema:name pubmed_id
    69 schema:value 30914741
    70 rdf:type schema:PropertyValue
    71 N3dc9461f4b1445df965657bb1b80fac0 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N588a9702bf9e4a3c85919b847645c591 schema:affiliation https://www.grid.ac/institutes/grid.10858.34
    74 schema:familyName Bykov
    75 schema:givenName Alexander
    76 rdf:type schema:Person
    77 N5e5fe9e93d7d42dab9f265beba65d520 schema:issueNumber 1
    78 rdf:type schema:PublicationIssue
    79 N647a2231bfd04520ba5cb92f148fa2ec rdf:first N588a9702bf9e4a3c85919b847645c591
    80 rdf:rest N69e5fee68d494b4d956baddfdbc7afbd
    81 N661db766d8ae4fcfbd37171a4980da9a schema:name nlm_unique_id
    82 schema:value 101563288
    83 rdf:type schema:PropertyValue
    84 N69e5fee68d494b4d956baddfdbc7afbd rdf:first Nfaf96e7ec2dc4026a73a7505535145af
    85 rdf:rest rdf:nil
    86 Na651fa28a59d4a7ea44c6b451bd16270 schema:name dimensions_id
    87 schema:value pub.1112985833
    88 rdf:type schema:PropertyValue
    89 Nbbd4c8ada8314d7e9239c95171fc5809 schema:affiliation https://www.grid.ac/institutes/grid.10858.34
    90 schema:familyName Popov
    91 schema:givenName Alexey
    92 rdf:type schema:Person
    93 Ncb48d1e08e844ce09eb72be820bb0de6 schema:name doi
    94 schema:value 10.1038/s41598-019-41643-x
    95 rdf:type schema:PropertyValue
    96 Nfaf96e7ec2dc4026a73a7505535145af schema:affiliation https://www.grid.ac/institutes/grid.183446.c
    97 schema:familyName Meglinski
    98 schema:givenName Igor
    99 rdf:type schema:Person
    100 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Technology
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Nanotechnology
    105 rdf:type schema:DefinedTerm
    106 sg:grant.4248626 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41643-x
    107 rdf:type schema:MonetaryGrant
    108 sg:journal.1045337 schema:issn 2045-2322
    109 schema:name Scientific Reports
    110 rdf:type schema:Periodical
    111 sg:pub.10.1007/978-0-387-72027-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042197673
    112 https://doi.org/10.1007/978-0-387-72027-2
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-642-71790-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001211855
    115 https://doi.org/10.1007/978-3-642-71790-1_16
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00249-006-0107-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032187500
    118 https://doi.org/10.1007/s00249-006-0107-1
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s12013-015-0705-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021924330
    121 https://doi.org/10.1007/s12013-015-0705-6
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/330769a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023765266
    124 https://doi.org/10.1038/330769a0
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/nmat2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051411109
    127 https://doi.org/10.1038/nmat2398
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/s41598-018-19897-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100523040
    130 https://doi.org/10.1038/s41598-018-19897-8
    131 rdf:type schema:CreativeWork
    132 https://app.dimensions.ai/details/publication/pub.1108596587 schema:CreativeWork
    133 https://doi.org/10.1016/b978-0-85709-662-3.00011-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044996548
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.addr.2016.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042506372
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.biomaterials.2010.12.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283320
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.fct.2008.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016854594
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.jconrel.2016.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018653433
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.nano.2015.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038129125
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/s0006-3495(89)82841-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030013634
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/s0302-4598(00)00109-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055585
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1021/am300992x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055142532
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1021/am404860q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055144706
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1021/es0522635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055498778
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1021/tx500479m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056299418
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1039/c4tx00138a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008819365
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1063/1.1740347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057803139
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevlett.24.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773312
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/jstqe.2015.2477396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337287
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1117/1.jbo.21.3.035001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009558531
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1364/ol.43.003921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106028714
    168 rdf:type schema:CreativeWork
    169 https://www.grid.ac/institutes/grid.10858.34 schema:alternateName University of Oulu
    170 schema:name Opto-Electronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland
    171 rdf:type schema:Organization
    172 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
    173 schema:name Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050, Tomsk, Russia
    174 National Research Nuclear University – MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
    175 Opto-Electronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...