Genome-Wide Association Study of Major Agronomic Traits in Foxtail Millet (Setaria italica L.) Using ddRAD Sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Vandana Jaiswal, Sarika Gupta, Vijay Gahlaut, Mehanathan Muthamilarasan, Tirthankar Bandyopadhyay, Nirala Ramchiary, Manoj Prasad

ABSTRACT

Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized for food and forage globally. Further, it is also considered as a model crop for studying agronomic, nutritional and biofuel traits. In the present study, a genome-wide association study (GWAS) was performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse genotypes using 10 K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW (thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified in the present study may prove valuable for foxtail millet improvement through marker-assisted selection. More... »

PAGES

5020

References to SciGraph publications

  • 2010-12. Population genetics of foxtail millet and its wild ancestor in BMC GENETICS
  • 1996-01. Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China in EUPHYTICA
  • 2013-08. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica) in NATURE GENETICS
  • 2011-09. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa in NATURE COMMUNICATIONS
  • 2001-05. Meiotic recombination hot spots and cold spots in NATURE REVIEWS GENETICS
  • 2010-10-28. Fine-scale recombination rate differences between sexes, populations and individuals in NATURE
  • 2013-03. Construction of a foxtail millet linkage map and mapping of spikelet-tipped bristles1(stb1) by using transposon display markers and simple sequence repeat markers with genome sequence information in MOLECULAR BREEDING
  • 2014-06. Population structure and association mapping of yield contributing agronomic traits in foxtail millet in PLANT CELL REPORTS
  • 2012-08. Association mapping for pre-harvest sprouting resistance in white winter wheat in THEORETICAL AND APPLIED GENETICS
  • 2010-01. Chemical Characteristics and Fatty Acid Profile of Foxtail Millet Bran Oil in JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY
  • 2015-01. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses in THEORETICAL AND APPLIED GENETICS
  • 2005-03. Linkage disequilibrium and association studies in higher plants: Present status and future prospects in PLANT MOLECULAR BIOLOGY
  • 2017-12. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness in SCIENTIFIC REPORTS
  • 2010-11. Genome-wide association studies of 14 agronomic traits in rice landraces in NATURE GENETICS
  • 2016-12. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China in BMC GENOMICS
  • 2010-06. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines in NATURE
  • 2016-12. Genome-wide variation in recombination rate in Eucalyptus in BMC GENOMICS
  • 1985-03. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues in PLANT MOLECULAR BIOLOGY
  • 2016-08. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice in NATURE GENETICS
  • 2012-11. Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.) in EUPHYTICA
  • 2016-12. A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.] in BMC GENOMICS
  • 2012-06. Reference genome sequence of the model plant Setaria in NATURE BIOTECHNOLOGY
  • 2012-06. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential in NATURE BIOTECHNOLOGY
  • 2016-12. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton in BMC GENOMICS
  • 2011-02. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population in NATURE GENETICS
  • 2006-02. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-41602-6

    DOI

    http://dx.doi.org/10.1038/s41598-019-41602-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112945024

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30903013


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jawaharlal Nehru University", 
              "id": "https://www.grid.ac/institutes/grid.10706.30", 
              "name": [
                "School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jaiswal", 
            "givenName": "Vandana", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jawaharlal Nehru University", 
              "id": "https://www.grid.ac/institutes/grid.10706.30", 
              "name": [
                "School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gupta", 
            "givenName": "Sarika", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gahlaut", 
            "givenName": "Vijay", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Centre on Plant Biotechnology", 
              "id": "https://www.grid.ac/institutes/grid.466936.8", 
              "name": [
                "National Institute of Plant Genome Research, New Delhi, 110067, India.", 
                "ICAR-National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, 110012, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muthamilarasan", 
            "givenName": "Mehanathan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research, New Delhi, 110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bandyopadhyay", 
            "givenName": "Tirthankar", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jawaharlal Nehru University", 
              "id": "https://www.grid.ac/institutes/grid.10706.30", 
              "name": [
                "School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramchiary", 
            "givenName": "Nirala", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research, New Delhi, 110067, India. manoj_prasad@nipgr.ac.in."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prasad", 
            "givenName": "Manoj", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/jxb/err096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000743092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000957954", 
              "https://doi.org/10.1007/bf00022961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000957954", 
              "https://doi.org/10.1007/bf00022961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.201394398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001866470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.150730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001940034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-11-90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005182775", 
              "https://doi.org/10.1186/1471-2156-11-90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2628-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005883054", 
              "https://doi.org/10.1186/s12864-016-2628-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2005.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006045024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-5809(88)90004-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006971561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plantsci.2015.08.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008735871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009890914", 
              "https://doi.org/10.1038/ng.695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009890914", 
              "https://doi.org/10.1038/ng.695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010639988", 
              "https://doi.org/10.1038/35072078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010639988", 
              "https://doi.org/10.1038/35072078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011822475", 
              "https://doi.org/10.1038/ncomms1467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0148671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013110905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0148671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013110905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0148671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013110905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013548949", 
              "https://doi.org/10.1038/nbt.2196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014780985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014780985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2884-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014910353", 
              "https://doi.org/10.1186/s12864-016-2884-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2884-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014910353", 
              "https://doi.org/10.1186/s12864-016-2884-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2662-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016250629", 
              "https://doi.org/10.1186/s12864-016-2662-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.112.005207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016371955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.112.005207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016371955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1005767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017686874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018092601", 
              "https://doi.org/10.1038/ng.747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2016.01576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020797340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0402892101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021331020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0122165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021927517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-800271-1.00002-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024430248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11746-009-1475-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027953703", 
              "https://doi.org/10.1007/s11746-009-1475-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11746-009-1475-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027953703", 
              "https://doi.org/10.1007/s11746-009-1475-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-014-1564-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927977", 
              "https://doi.org/10.1007/s00299-014-1564-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-014-1564-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927977", 
              "https://doi.org/10.1007/s00299-014-1564-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/pbi.12693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030798198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.035543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030819634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.035543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030819634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030868615", 
              "https://doi.org/10.1038/nature09525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030868615", 
              "https://doi.org/10.1038/nature09525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-014-2399-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031578107", 
              "https://doi.org/10.1007/s00122-014-2399-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2016.01801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034148569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2875-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035772217", 
              "https://doi.org/10.1186/s12864-016-2875-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2875-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035772217", 
              "https://doi.org/10.1186/s12864-016-2875-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035781360", 
              "https://doi.org/10.1038/ng1702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035781360", 
              "https://doi.org/10.1038/ng1702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/err016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036222137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2005.02591.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036632576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2005.02591.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036632576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038401461", 
              "https://doi.org/10.1038/ng.2673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-012-9825-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039773541", 
              "https://doi.org/10.1007/s11032-012-9825-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-005-0257-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170512", 
              "https://doi.org/10.1007/s11103-005-0257-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040364881", 
              "https://doi.org/10.1038/nature08800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040364881", 
              "https://doi.org/10.1038/nature08800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041281690", 
              "https://doi.org/10.1038/nbt.2195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-1872-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041684457", 
              "https://doi.org/10.1007/s00122-012-1872-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-1872-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041684457", 
              "https://doi.org/10.1007/s00122-012-1872-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-012-0713-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042955481", 
              "https://doi.org/10.1007/s10681-012-0713-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.105.044586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043074747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.105.044586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043074747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.105.044586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043074747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0159343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043077176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00020088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047432473", 
              "https://doi.org/10.1007/bf00020088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00020088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047432473", 
              "https://doi.org/10.1007/bf00020088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047450337", 
              "https://doi.org/10.1038/ng.3596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0037135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049371751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2016.01010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051504846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0057220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052879512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1614/p2002-ir", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068124776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2008.02.0089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071447719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-016-0028-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079403223", 
              "https://doi.org/10.1038/s41598-016-0028-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.117.041517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084344350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.117.041517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084344350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2017.00412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085100423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0179717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086146593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1270/jsbbs.17061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092911014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/bs.adgen.2019.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112224759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/bs.adgen.2019.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112224759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/bs.adgen.2019.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112224759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/bs.adgen.2019.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112224759"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized for food and forage globally. Further, it is also considered as a model crop for studying agronomic, nutritional and biofuel traits. In the present study, a genome-wide association study (GWAS) was performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse genotypes using 10\u2009K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW (thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified in the present study may prove valuable for foxtail millet improvement through marker-assisted selection.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-41602-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Genome-Wide Association Study of Major Agronomic Traits in Foxtail Millet (Setaria italica L.) Using ddRAD Sequencing", 
        "pagination": "5020", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6c0bc8f79957bcb62d4932d1997a91a58768fc2f983feef76a0b3a1e2e61def2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30903013"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-41602-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112945024"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-41602-6", 
          "https://app.dimensions.ai/details/publication/pub.1112945024"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-41602-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41602-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41602-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41602-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41602-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    313 TRIPLES      21 PREDICATES      87 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-41602-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N3758bb71fe09478592d679aa7dddc06e
    4 schema:citation sg:pub.10.1007/bf00020088
    5 sg:pub.10.1007/bf00022961
    6 sg:pub.10.1007/s00122-012-1872-0
    7 sg:pub.10.1007/s00122-014-2399-3
    8 sg:pub.10.1007/s00299-014-1564-0
    9 sg:pub.10.1007/s10681-012-0713-1
    10 sg:pub.10.1007/s11032-012-9825-5
    11 sg:pub.10.1007/s11103-005-0257-z
    12 sg:pub.10.1007/s11746-009-1475-3
    13 sg:pub.10.1038/35072078
    14 sg:pub.10.1038/nature08800
    15 sg:pub.10.1038/nature09525
    16 sg:pub.10.1038/nbt.2195
    17 sg:pub.10.1038/nbt.2196
    18 sg:pub.10.1038/ncomms1467
    19 sg:pub.10.1038/ng.2673
    20 sg:pub.10.1038/ng.3596
    21 sg:pub.10.1038/ng.695
    22 sg:pub.10.1038/ng.747
    23 sg:pub.10.1038/ng1702
    24 sg:pub.10.1038/s41598-016-0028-x
    25 sg:pub.10.1186/1471-2156-11-90
    26 sg:pub.10.1186/s12864-016-2628-z
    27 sg:pub.10.1186/s12864-016-2662-x
    28 sg:pub.10.1186/s12864-016-2875-z
    29 sg:pub.10.1186/s12864-016-2884-y
    30 https://app.dimensions.ai/details/publication/pub.1074647594
    31 https://doi.org/10.1016/0040-5809(88)90004-4
    32 https://doi.org/10.1016/b978-0-12-800271-1.00002-0
    33 https://doi.org/10.1016/bs.adgen.2019.01.001
    34 https://doi.org/10.1016/j.plantsci.2015.08.023
    35 https://doi.org/10.1016/j.ygeno.2005.06.007
    36 https://doi.org/10.1073/pnas.0402892101
    37 https://doi.org/10.1073/pnas.201394398
    38 https://doi.org/10.1093/jxb/err016
    39 https://doi.org/10.1093/jxb/err096
    40 https://doi.org/10.1105/tpc.150730
    41 https://doi.org/10.1111/j.1365-313x.2005.02591.x
    42 https://doi.org/10.1111/pbi.12693
    43 https://doi.org/10.1270/jsbbs.17061
    44 https://doi.org/10.1371/journal.pgen.1005767
    45 https://doi.org/10.1371/journal.pone.0037135
    46 https://doi.org/10.1371/journal.pone.0057220
    47 https://doi.org/10.1371/journal.pone.0122165
    48 https://doi.org/10.1371/journal.pone.0148671
    49 https://doi.org/10.1371/journal.pone.0159343
    50 https://doi.org/10.1371/journal.pone.0179717
    51 https://doi.org/10.1534/g3.112.005207
    52 https://doi.org/10.1534/g3.117.041517
    53 https://doi.org/10.1534/genetics.104.035543
    54 https://doi.org/10.1534/genetics.105.044586
    55 https://doi.org/10.1534/genetics.107.074518
    56 https://doi.org/10.1614/p2002-ir
    57 https://doi.org/10.3389/fpls.2016.01010
    58 https://doi.org/10.3389/fpls.2016.01576
    59 https://doi.org/10.3389/fpls.2016.01801
    60 https://doi.org/10.3389/fpls.2017.00412
    61 https://doi.org/10.3835/plantgenome2008.02.0089
    62 schema:datePublished 2019-12
    63 schema:datePublishedReg 2019-12-01
    64 schema:description Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized for food and forage globally. Further, it is also considered as a model crop for studying agronomic, nutritional and biofuel traits. In the present study, a genome-wide association study (GWAS) was performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse genotypes using 10 K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW (thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified in the present study may prove valuable for foxtail millet improvement through marker-assisted selection.
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree true
    68 schema:isPartOf N4d97c6e2357649b593ce02829be2dfdc
    69 Ncb2fae119f2845d9b9b1020c56c117a5
    70 sg:journal.1045337
    71 schema:name Genome-Wide Association Study of Major Agronomic Traits in Foxtail Millet (Setaria italica L.) Using ddRAD Sequencing
    72 schema:pagination 5020
    73 schema:productId N1dcec220c40b4ad8ad9034e056dca849
    74 N731524bd70224181b67c07cffe626666
    75 N82b4e55dc15c4c849fe57423d03e695b
    76 N94883f1942e348daab3e4cb318c71bb8
    77 Nf8bde5ebab2243528337cd8234657835
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112945024
    79 https://doi.org/10.1038/s41598-019-41602-6
    80 schema:sdDatePublished 2019-04-11T13:54
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N364d7023663e478198cdc830dd960c45
    83 schema:url https://www.nature.com/articles/s41598-019-41602-6
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N0c866df328eb4ddead7241ae79a94a8d schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    88 schema:familyName Bandyopadhyay
    89 schema:givenName Tirthankar
    90 rdf:type schema:Person
    91 N106cb553a68e48b791228f5962a046ea schema:affiliation https://www.grid.ac/institutes/grid.10706.30
    92 schema:familyName Gupta
    93 schema:givenName Sarika
    94 rdf:type schema:Person
    95 N1dcec220c40b4ad8ad9034e056dca849 schema:name readcube_id
    96 schema:value 6c0bc8f79957bcb62d4932d1997a91a58768fc2f983feef76a0b3a1e2e61def2
    97 rdf:type schema:PropertyValue
    98 N364d7023663e478198cdc830dd960c45 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N3758bb71fe09478592d679aa7dddc06e rdf:first Na80e62d26e2c4fc3ba5ed7443c16ad48
    101 rdf:rest N376bacac21e84ce6948e4f4bd8d01eaf
    102 N376bacac21e84ce6948e4f4bd8d01eaf rdf:first N106cb553a68e48b791228f5962a046ea
    103 rdf:rest N8fe0d2ba615b41de90d9a6670da6c500
    104 N4d97c6e2357649b593ce02829be2dfdc schema:volumeNumber 9
    105 rdf:type schema:PublicationVolume
    106 N5189048be0ec423689dd35d27ae07bd3 schema:affiliation https://www.grid.ac/institutes/grid.466936.8
    107 schema:familyName Muthamilarasan
    108 schema:givenName Mehanathan
    109 rdf:type schema:Person
    110 N5e1d357abe274980a23b8aaa5d2a01f5 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
    111 schema:familyName Ramchiary
    112 schema:givenName Nirala
    113 rdf:type schema:Person
    114 N731524bd70224181b67c07cffe626666 schema:name pubmed_id
    115 schema:value 30903013
    116 rdf:type schema:PropertyValue
    117 N7a2348ed10cf4ec78f1a3030a49b2170 rdf:first N5e1d357abe274980a23b8aaa5d2a01f5
    118 rdf:rest Neac6140bc5854229983da44c0063ea99
    119 N82b4e55dc15c4c849fe57423d03e695b schema:name doi
    120 schema:value 10.1038/s41598-019-41602-6
    121 rdf:type schema:PropertyValue
    122 N8fe0d2ba615b41de90d9a6670da6c500 rdf:first Nfae02da4fd884603a3520caa70615494
    123 rdf:rest Nd01c20ace4034440ae1bf36d3ce22a67
    124 N94883f1942e348daab3e4cb318c71bb8 schema:name nlm_unique_id
    125 schema:value 101563288
    126 rdf:type schema:PropertyValue
    127 Na80e62d26e2c4fc3ba5ed7443c16ad48 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
    128 schema:familyName Jaiswal
    129 schema:givenName Vandana
    130 rdf:type schema:Person
    131 Nc0fadb50faaa43d9a39e9eb498802963 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    132 schema:familyName Prasad
    133 schema:givenName Manoj
    134 rdf:type schema:Person
    135 Ncb2fae119f2845d9b9b1020c56c117a5 schema:issueNumber 1
    136 rdf:type schema:PublicationIssue
    137 Nd01c20ace4034440ae1bf36d3ce22a67 rdf:first N5189048be0ec423689dd35d27ae07bd3
    138 rdf:rest Ndc1bb6b2f0bc4471b8b8b3f86153d838
    139 Ndc1bb6b2f0bc4471b8b8b3f86153d838 rdf:first N0c866df328eb4ddead7241ae79a94a8d
    140 rdf:rest N7a2348ed10cf4ec78f1a3030a49b2170
    141 Neac6140bc5854229983da44c0063ea99 rdf:first Nc0fadb50faaa43d9a39e9eb498802963
    142 rdf:rest rdf:nil
    143 Nf8bde5ebab2243528337cd8234657835 schema:name dimensions_id
    144 schema:value pub.1112945024
    145 rdf:type schema:PropertyValue
    146 Nfae02da4fd884603a3520caa70615494 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    147 schema:familyName Gahlaut
    148 schema:givenName Vijay
    149 rdf:type schema:Person
    150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Biological Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Genetics
    155 rdf:type schema:DefinedTerm
    156 sg:journal.1045337 schema:issn 2045-2322
    157 schema:name Scientific Reports
    158 rdf:type schema:Periodical
    159 sg:pub.10.1007/bf00020088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047432473
    160 https://doi.org/10.1007/bf00020088
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00022961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000957954
    163 https://doi.org/10.1007/bf00022961
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00122-012-1872-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041684457
    166 https://doi.org/10.1007/s00122-012-1872-0
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00122-014-2399-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031578107
    169 https://doi.org/10.1007/s00122-014-2399-3
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00299-014-1564-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028927977
    172 https://doi.org/10.1007/s00299-014-1564-0
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10681-012-0713-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042955481
    175 https://doi.org/10.1007/s10681-012-0713-1
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11032-012-9825-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039773541
    178 https://doi.org/10.1007/s11032-012-9825-5
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11103-005-0257-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170512
    181 https://doi.org/10.1007/s11103-005-0257-z
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11746-009-1475-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027953703
    184 https://doi.org/10.1007/s11746-009-1475-3
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/35072078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010639988
    187 https://doi.org/10.1038/35072078
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature08800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040364881
    190 https://doi.org/10.1038/nature08800
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature09525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030868615
    193 https://doi.org/10.1038/nature09525
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nbt.2195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041281690
    196 https://doi.org/10.1038/nbt.2195
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nbt.2196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013548949
    199 https://doi.org/10.1038/nbt.2196
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/ncomms1467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011822475
    202 https://doi.org/10.1038/ncomms1467
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/ng.2673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038401461
    205 https://doi.org/10.1038/ng.2673
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/ng.3596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047450337
    208 https://doi.org/10.1038/ng.3596
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/ng.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009890914
    211 https://doi.org/10.1038/ng.695
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/ng.747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018092601
    214 https://doi.org/10.1038/ng.747
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
    217 https://doi.org/10.1038/ng1702
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/s41598-016-0028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079403223
    220 https://doi.org/10.1038/s41598-016-0028-x
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/1471-2156-11-90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005182775
    223 https://doi.org/10.1186/1471-2156-11-90
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/s12864-016-2628-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005883054
    226 https://doi.org/10.1186/s12864-016-2628-z
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/s12864-016-2662-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016250629
    229 https://doi.org/10.1186/s12864-016-2662-x
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/s12864-016-2875-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035772217
    232 https://doi.org/10.1186/s12864-016-2875-z
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/s12864-016-2884-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014910353
    235 https://doi.org/10.1186/s12864-016-2884-y
    236 rdf:type schema:CreativeWork
    237 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
    238 https://doi.org/10.1016/0040-5809(88)90004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006971561
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/b978-0-12-800271-1.00002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024430248
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/bs.adgen.2019.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112224759
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.plantsci.2015.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008735871
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.ygeno.2005.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006045024
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1073/pnas.0402892101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021331020
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1073/pnas.201394398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001866470
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/jxb/err016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036222137
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/jxb/err096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000743092
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1105/tpc.150730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001940034
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1111/j.1365-313x.2005.02591.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036632576
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1111/pbi.12693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030798198
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1270/jsbbs.17061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092911014
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1371/journal.pgen.1005767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017686874
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1371/journal.pone.0037135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049371751
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1371/journal.pone.0057220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052879512
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1371/journal.pone.0122165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021927517
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1371/journal.pone.0148671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013110905
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1371/journal.pone.0159343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043077176
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1371/journal.pone.0179717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086146593
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1534/g3.112.005207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016371955
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1534/g3.117.041517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084344350
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1534/genetics.104.035543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030819634
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1534/genetics.105.044586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043074747
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1534/genetics.107.074518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014780985
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1614/p2002-ir schema:sameAs https://app.dimensions.ai/details/publication/pub.1068124776
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.3389/fpls.2016.01010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051504846
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.3389/fpls.2016.01576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020797340
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.3389/fpls.2016.01801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034148569
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.3389/fpls.2017.00412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085100423
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.3835/plantgenome2008.02.0089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447719
    299 rdf:type schema:CreativeWork
    300 https://www.grid.ac/institutes/grid.10706.30 schema:alternateName Jawaharlal Nehru University
    301 schema:name School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
    302 rdf:type schema:Organization
    303 https://www.grid.ac/institutes/grid.419632.b schema:alternateName National Institute of Plant Genome Research
    304 schema:name National Institute of Plant Genome Research, New Delhi, 110067, India.
    305 National Institute of Plant Genome Research, New Delhi, 110067, India. manoj_prasad@nipgr.ac.in.
    306 rdf:type schema:Organization
    307 https://www.grid.ac/institutes/grid.466936.8 schema:alternateName National Research Centre on Plant Biotechnology
    308 schema:name ICAR-National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, 110012, India.
    309 National Institute of Plant Genome Research, New Delhi, 110067, India.
    310 rdf:type schema:Organization
    311 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
    312 schema:name Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
    313 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...