Identification and characterization of the lncRNA signature associated with overall survival in patients with neuroblastoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-26

AUTHORS

Srinivasulu Yerukala Sathipati, Divya Sahu, Hsuan-Cheng Huang, Yenching Lin, Shinn-Ying Ho

ABSTRACT

Neuroblastoma (NB) is a commonly occurring cancer among infants and young children. Recently, long non-coding RNAs (lncRNAs) have been using as prognostic biomarkers for therapeutics and interventions in various cancers. Considering the poor survival of NB, the lncRNA-based therapeutic strategies must be improved. This work proposes an overall survival time estimator called SVR-NB to identify the lncRNA signature that is associated with the overall survival of patients with NB. SVR-NB is an optimized support vector regression (SVR)-based method that uses an inheritable bi-objective combinatorial genetic algorithm for feature selection. The dataset of 231 NB patients that contains overall survival information and expression profiles of 783 lncRNAs was used to design and evaluate SVR-NB from the database of gene expression omnibus accession GSE62564. SVR-NB identified a signature of 35 lncRNAs and achieved a mean squared correlation coefficient of 0.85 and a mean absolute error of 0.56 year between the actual and estimated overall survival time using 10-fold cross-validation. Further, we ranked and characterized the 35 lncRNAs according to their contribution towards the estimation accuracy. Functional annotations and co-expression gene analysis of LOC440896, LINC00632, and IGF2-AS revealed the association of co-expressed genes in Kyoto Encyclopedia of Genes and Genomes pathways. More... »

PAGES

5125

References to SciGraph publications

  • 2013-04-04. Identification of novel biomarkers in neuroblastoma associated with the risk for bone marrow metastasis: a pilot study in CLINICAL AND TRANSLATIONAL ONCOLOGY
  • 2008-07-15. Computational identification of ubiquitylation sites from protein sequences in BMC BIOINFORMATICS
  • 2012-02-14. Transcriptomic landscape of breast cancers through mRNA sequencing in SCIENTIFIC REPORTS
  • 2008-08-24. Identification of ALK as a major familial neuroblastoma predisposition gene in NATURE
  • 2014-10-06. A four-long non-coding RNA signature in predicting breast cancer survival in JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
  • 2017-11-23. An immune-related lncRNA signature for patients with anaplastic gliomas in JOURNAL OF NEURO-ONCOLOGY
  • 2017-02-08. Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer in CANCER CHEMOTHERAPY AND PHARMACOLOGY
  • 2008-12-18. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources in NATURE PROTOCOLS
  • 2004-10-13. Neutral evolution of ‘non-coding’ complementary DNAs in NATURE
  • 1995-09. Support-Vector Networks in MACHINE LEARNING
  • 2016-09-20. A long non-coding RNA signature to improve prognosis prediction of gastric cancer in MOLECULAR CANCER
  • 2015-09-11. Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma in JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
  • 2016-12-22. Estimating survival time of patients with glioblastoma multiforme and characterization of the identified microRNA signatures in BMC GENOMICS
  • 2003-03. Neuroblastoma: biological insights into a clinical enigma in NATURE REVIEWS CANCER
  • 2017-02-27. The chemical evolution of oligonucleotide therapies of clinical utility in NATURE BIOTECHNOLOGY
  • 2013-09-27. Evaluation of Tissue PCA3 Expression in Prostate Cancer by RNA in situ Hybridization - A Correlative Study with Urine PCA3 and TMPRSS2-ERG in MODERN PATHOLOGY
  • 2012-02-22. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes in NATURE
  • 2013-12-10. Genome-wide association study of bipolar disorder accounting for effect of body mass index identifies a new risk allele in TCF7L2 in MOLECULAR PSYCHIATRY
  • 2015-02-27. Two independent epigenetic biomarkers predict survival in neuroblastoma in CLINICAL EPIGENETICS
  • 2018-10-31. Identifying a miRNA signature for predicting the stage of breast cancer in SCIENTIFIC REPORTS
  • 2010-02-02. Genome-wide association study of recurrent early-onset major depressive disorder in MOLECULAR PSYCHIATRY
  • 2018-06-11. A seven-lncRNA signature predicts overall survival in esophageal squamous cell carcinoma in SCIENTIFIC REPORTS
  • 2006-09. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2017-05-19. An Immune-Related Six-lncRNA Signature to Improve Prognosis Prediction of Glioblastoma Multiforme in MOLECULAR NEUROBIOLOGY
  • 2009-07-18. Regulation of MYCN expression in human neuroblastoma cells in BMC CANCER
  • 2013-04-22. RNA sequencing of cancer reveals novel splicing alterations in SCIENTIFIC REPORTS
  • 2017-08-08. Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-41553-y

    DOI

    http://dx.doi.org/10.1038/s41598-019-41553-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112983805

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30914706


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child, Preschool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease-Free Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant, Newborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuroblastoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Long Noncoding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Survival Rate", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sathipati", 
            "givenName": "Srinivasulu Yerukala", 
            "id": "sg:person.011126212334.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126212334.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260770.4", 
              "name": [
                "Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sahu", 
            "givenName": "Divya", 
            "id": "sg:person.012730542625.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730542625.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.28665.3f", 
              "name": [
                "Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan", 
                "Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Hsuan-Cheng", 
            "id": "sg:person.0756305244.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756305244.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Yenching", 
            "id": "sg:person.013247535561.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247535561.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan", 
                "Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan", 
                "Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan", 
                "Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan", 
                "Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ho", 
            "givenName": "Shinn-Ying", 
            "id": "sg:person.01074261064.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074261064.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature03016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046183748", 
              "https://doi.org/10.1038/nature03016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023388082", 
              "https://doi.org/10.1038/nature07261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11060-017-2667-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092955034", 
              "https://doi.org/10.1007/s11060-017-2667-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009107865", 
              "https://doi.org/10.1038/nrm1987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008818340", 
              "https://doi.org/10.1038/nrc1014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12943-016-0544-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053401210", 
              "https://doi.org/10.1186/s12943-016-0544-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2013.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013684034", 
              "https://doi.org/10.1038/mp.2013.159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep00264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032998035", 
              "https://doi.org/10.1038/srep00264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-07739-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091025318", 
              "https://doi.org/10.1038/s41598-017-07739-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-3321-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035801891", 
              "https://doi.org/10.1186/s12864-016-3321-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-017-0572-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085443679", 
              "https://doi.org/10.1007/s12035-017-0572-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015576304", 
              "https://doi.org/10.1186/1471-2105-9-310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029505563", 
              "https://doi.org/10.1038/nature10910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13148-015-0054-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026858313", 
              "https://doi.org/10.1186/s13148-015-0054-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039987283", 
              "https://doi.org/10.1038/nprot.2008.211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022627411411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005207849", 
              "https://doi.org/10.1023/a:1022627411411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-9-239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047830981", 
              "https://doi.org/10.1186/1471-2407-9-239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2009.124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045597748", 
              "https://doi.org/10.1038/mp.2009.124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-34604-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107849828", 
              "https://doi.org/10.1038/s41598-018-34604-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00280-017-3238-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698235", 
              "https://doi.org/10.1007/s00280-017-3238-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031971047", 
              "https://doi.org/10.1038/srep01689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13046-015-0219-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031784936", 
              "https://doi.org/10.1186/s13046-015-0219-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27307-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104412699", 
              "https://doi.org/10.1038/s41598-018-27307-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12094-013-1030-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007989337", 
              "https://doi.org/10.1007/s12094-013-1030-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128636", 
              "https://doi.org/10.1038/nbt.3765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2013.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047625289", 
              "https://doi.org/10.1038/modpathol.2013.169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13046-014-0084-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014626323", 
              "https://doi.org/10.1186/s13046-014-0084-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-26", 
        "datePublishedReg": "2019-03-26", 
        "description": "Neuroblastoma (NB) is a commonly occurring cancer among infants and young children. Recently, long non-coding RNAs (lncRNAs) have been using as prognostic biomarkers for therapeutics and interventions in various cancers. Considering the poor survival of NB, the lncRNA-based therapeutic strategies must be improved. This work proposes an overall survival time estimator called SVR-NB to identify the lncRNA signature that is associated with the overall survival of patients with NB. SVR-NB is an optimized support vector regression (SVR)-based method that uses an inheritable bi-objective combinatorial genetic algorithm for feature selection. The dataset of 231 NB patients that contains overall survival information and expression profiles of 783 lncRNAs was used to design and evaluate SVR-NB from the database of gene expression omnibus accession GSE62564. SVR-NB identified a signature of 35 lncRNAs and achieved a mean squared correlation coefficient of 0.85 and a mean absolute error of 0.56 year between the actual and estimated overall survival time using 10-fold cross-validation. Further, we ranked and characterized the 35 lncRNAs according to their contribution towards the estimation accuracy. Functional annotations and co-expression gene analysis of LOC440896, LINC00632, and IGF2-AS revealed the association of co-expressed genes in Kyoto Encyclopedia of Genes and Genomes pathways.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-41553-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "overall survival", 
          "lncRNA signature", 
          "overall survival information", 
          "overall survival time", 
          "co-expression gene analysis", 
          "NB patients", 
          "poor survival", 
          "prognostic biomarker", 
          "long non-coding RNAs", 
          "survival time", 
          "therapeutic strategies", 
          "neuroblastoma", 
          "survival information", 
          "IGF2-AS", 
          "patients", 
          "young children", 
          "survival", 
          "non-coding RNAs", 
          "cancer", 
          "association of co", 
          "inheritable bi-objective combinatorial genetic algorithm", 
          "lncRNAs", 
          "expression profiles", 
          "Genomes (KEGG) pathways", 
          "gene analysis", 
          "Kyoto Encyclopedia", 
          "infants", 
          "biomarkers", 
          "intervention", 
          "correlation coefficient", 
          "children", 
          "therapeutics", 
          "association", 
          "genes", 
          "regression", 
          "years", 
          "pathway", 
          "RNA", 
          "database", 
          "profile", 
          "combinatorial genetic algorithm", 
          "identification", 
          "strategies", 
          "Encyclopedia", 
          "time", 
          "signatures", 
          "functional annotation", 
          "analysis", 
          "information", 
          "selection", 
          "method", 
          "characterization", 
          "contribution", 
          "mean absolute error", 
          "accuracy", 
          "absolute error", 
          "work", 
          "coefficient", 
          "feature selection", 
          "dataset", 
          "error", 
          "Optimized Support Vector Regression", 
          "annotation", 
          "time estimator", 
          "CO", 
          "algorithm", 
          "estimator", 
          "support vector regression", 
          "vector regression", 
          "estimation accuracy", 
          "genetic algorithm", 
          "lncRNA-based therapeutic strategies", 
          "overall survival time estimator", 
          "survival time estimator", 
          "SVR-NB", 
          "bi-objective combinatorial genetic algorithm", 
          "gene expression omnibus accession GSE62564", 
          "expression omnibus accession GSE62564", 
          "omnibus accession GSE62564", 
          "accession GSE62564", 
          "GSE62564", 
          "LOC440896"
        ], 
        "name": "Identification and characterization of the lncRNA signature associated with overall survival in patients with neuroblastoma", 
        "pagination": "5125", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112983805"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-41553-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30914706"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-41553-y", 
          "https://app.dimensions.ai/details/publication/pub.1112983805"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_813.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-41553-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41553-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41553-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41553-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41553-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    348 TRIPLES      22 PREDICATES      149 URIs      114 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-41553-y schema:about N014cba7c5f5b47548a666dec44719fe6
    2 N12b7196e27fb47edbca9bfa79e45df02
    3 N398c37c5db9741ae92ed54f14389ac11
    4 N4b32d9686c6b4c7cb08fc27fc35e49cf
    5 N4ec3ebcc70444e60ae7f1a365187c567
    6 N55cc2f627de242b18c68f3eefcf8c416
    7 Na961b585f1304ac7b8f142cf3226d26f
    8 Nae36ad6a81954917b1a36271c1f43d73
    9 Nb52a265fe7d542a79bc5b110eb028c50
    10 Nb63c983babc54c889a8e8c84cadd2719
    11 Nb69b40e0227b4f7abb326f940f9f4bd9
    12 Nc0445ace7ed04a3a86f78bfd0742f549
    13 Nf3e5c43300624aaea9ceeb07a48a883e
    14 Nfd307928d0004e7f94b1cbb35c830867
    15 anzsrc-for:11
    16 anzsrc-for:1112
    17 schema:author Nfb2978644fe84dc1b31b56c1901ad5e2
    18 schema:citation sg:pub.10.1007/s00280-017-3238-4
    19 sg:pub.10.1007/s11060-017-2667-6
    20 sg:pub.10.1007/s12035-017-0572-9
    21 sg:pub.10.1007/s12094-013-1030-4
    22 sg:pub.10.1023/a:1022627411411
    23 sg:pub.10.1038/modpathol.2013.169
    24 sg:pub.10.1038/mp.2009.124
    25 sg:pub.10.1038/mp.2013.159
    26 sg:pub.10.1038/nature03016
    27 sg:pub.10.1038/nature07261
    28 sg:pub.10.1038/nature10910
    29 sg:pub.10.1038/nbt.3765
    30 sg:pub.10.1038/nprot.2008.211
    31 sg:pub.10.1038/nrc1014
    32 sg:pub.10.1038/nrm1987
    33 sg:pub.10.1038/s41598-017-07739-y
    34 sg:pub.10.1038/s41598-018-27307-2
    35 sg:pub.10.1038/s41598-018-34604-3
    36 sg:pub.10.1038/srep00264
    37 sg:pub.10.1038/srep01689
    38 sg:pub.10.1186/1471-2105-9-310
    39 sg:pub.10.1186/1471-2407-9-239
    40 sg:pub.10.1186/s12864-016-3321-y
    41 sg:pub.10.1186/s12943-016-0544-0
    42 sg:pub.10.1186/s13046-014-0084-7
    43 sg:pub.10.1186/s13046-015-0219-5
    44 sg:pub.10.1186/s13148-015-0054-8
    45 schema:datePublished 2019-03-26
    46 schema:datePublishedReg 2019-03-26
    47 schema:description Neuroblastoma (NB) is a commonly occurring cancer among infants and young children. Recently, long non-coding RNAs (lncRNAs) have been using as prognostic biomarkers for therapeutics and interventions in various cancers. Considering the poor survival of NB, the lncRNA-based therapeutic strategies must be improved. This work proposes an overall survival time estimator called SVR-NB to identify the lncRNA signature that is associated with the overall survival of patients with NB. SVR-NB is an optimized support vector regression (SVR)-based method that uses an inheritable bi-objective combinatorial genetic algorithm for feature selection. The dataset of 231 NB patients that contains overall survival information and expression profiles of 783 lncRNAs was used to design and evaluate SVR-NB from the database of gene expression omnibus accession GSE62564. SVR-NB identified a signature of 35 lncRNAs and achieved a mean squared correlation coefficient of 0.85 and a mean absolute error of 0.56 year between the actual and estimated overall survival time using 10-fold cross-validation. Further, we ranked and characterized the 35 lncRNAs according to their contribution towards the estimation accuracy. Functional annotations and co-expression gene analysis of LOC440896, LINC00632, and IGF2-AS revealed the association of co-expressed genes in Kyoto Encyclopedia of Genes and Genomes pathways.
    48 schema:genre article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree true
    51 schema:isPartOf N144740d35e7644439978b6bc2167975e
    52 N24b14ed0db0d413099c0e0b2f18566c6
    53 sg:journal.1045337
    54 schema:keywords CO
    55 Encyclopedia
    56 GSE62564
    57 Genomes (KEGG) pathways
    58 IGF2-AS
    59 Kyoto Encyclopedia
    60 LOC440896
    61 NB patients
    62 Optimized Support Vector Regression
    63 RNA
    64 SVR-NB
    65 absolute error
    66 accession GSE62564
    67 accuracy
    68 algorithm
    69 analysis
    70 annotation
    71 association
    72 association of co
    73 bi-objective combinatorial genetic algorithm
    74 biomarkers
    75 cancer
    76 characterization
    77 children
    78 co-expression gene analysis
    79 coefficient
    80 combinatorial genetic algorithm
    81 contribution
    82 correlation coefficient
    83 database
    84 dataset
    85 error
    86 estimation accuracy
    87 estimator
    88 expression omnibus accession GSE62564
    89 expression profiles
    90 feature selection
    91 functional annotation
    92 gene analysis
    93 gene expression omnibus accession GSE62564
    94 genes
    95 genetic algorithm
    96 identification
    97 infants
    98 information
    99 inheritable bi-objective combinatorial genetic algorithm
    100 intervention
    101 lncRNA signature
    102 lncRNA-based therapeutic strategies
    103 lncRNAs
    104 long non-coding RNAs
    105 mean absolute error
    106 method
    107 neuroblastoma
    108 non-coding RNAs
    109 omnibus accession GSE62564
    110 overall survival
    111 overall survival information
    112 overall survival time
    113 overall survival time estimator
    114 pathway
    115 patients
    116 poor survival
    117 profile
    118 prognostic biomarker
    119 regression
    120 selection
    121 signatures
    122 strategies
    123 support vector regression
    124 survival
    125 survival information
    126 survival time
    127 survival time estimator
    128 therapeutic strategies
    129 therapeutics
    130 time
    131 time estimator
    132 vector regression
    133 work
    134 years
    135 young children
    136 schema:name Identification and characterization of the lncRNA signature associated with overall survival in patients with neuroblastoma
    137 schema:pagination 5125
    138 schema:productId N0838cd73d3164870847aea899b0e2688
    139 N3c54623f94ce4d27bdbe87b160948d85
    140 N3d2108ad1d654b349abded4b4a8a6cac
    141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112983805
    142 https://doi.org/10.1038/s41598-019-41553-y
    143 schema:sdDatePublished 2021-12-01T19:44
    144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    145 schema:sdPublisher N49ba0927f85b454d8e274f17b6f65c94
    146 schema:url https://doi.org/10.1038/s41598-019-41553-y
    147 sgo:license sg:explorer/license/
    148 sgo:sdDataset articles
    149 rdf:type schema:ScholarlyArticle
    150 N014cba7c5f5b47548a666dec44719fe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Child, Preschool
    152 rdf:type schema:DefinedTerm
    153 N0838cd73d3164870847aea899b0e2688 schema:name dimensions_id
    154 schema:value pub.1112983805
    155 rdf:type schema:PropertyValue
    156 N12b7196e27fb47edbca9bfa79e45df02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name RNA, Long Noncoding
    158 rdf:type schema:DefinedTerm
    159 N144740d35e7644439978b6bc2167975e schema:issueNumber 1
    160 rdf:type schema:PublicationIssue
    161 N24b14ed0db0d413099c0e0b2f18566c6 schema:volumeNumber 9
    162 rdf:type schema:PublicationVolume
    163 N398c37c5db9741ae92ed54f14389ac11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Gene Expression Regulation
    165 rdf:type schema:DefinedTerm
    166 N3c54623f94ce4d27bdbe87b160948d85 schema:name doi
    167 schema:value 10.1038/s41598-019-41553-y
    168 rdf:type schema:PropertyValue
    169 N3d2108ad1d654b349abded4b4a8a6cac schema:name pubmed_id
    170 schema:value 30914706
    171 rdf:type schema:PropertyValue
    172 N49ba0927f85b454d8e274f17b6f65c94 schema:name Springer Nature - SN SciGraph project
    173 rdf:type schema:Organization
    174 N4b32d9686c6b4c7cb08fc27fc35e49cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Humans
    176 rdf:type schema:DefinedTerm
    177 N4ec3ebcc70444e60ae7f1a365187c567 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Female
    179 rdf:type schema:DefinedTerm
    180 N55cc2f627de242b18c68f3eefcf8c416 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Survival Rate
    182 rdf:type schema:DefinedTerm
    183 N5a2c1ccc77ff40ddacdfb5d64aab5b72 rdf:first sg:person.012730542625.65
    184 rdf:rest Nd21d74cb263e428493d708d9e2bf0d8c
    185 Na961b585f1304ac7b8f142cf3226d26f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Infant
    187 rdf:type schema:DefinedTerm
    188 Nae36ad6a81954917b1a36271c1f43d73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name RNA, Neoplasm
    190 rdf:type schema:DefinedTerm
    191 Nb52a265fe7d542a79bc5b110eb028c50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Male
    193 rdf:type schema:DefinedTerm
    194 Nb63c983babc54c889a8e8c84cadd2719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Disease-Free Survival
    196 rdf:type schema:DefinedTerm
    197 Nb69b40e0227b4f7abb326f940f9f4bd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Neuroblastoma
    199 rdf:type schema:DefinedTerm
    200 Nc0445ace7ed04a3a86f78bfd0742f549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Databases, Nucleic Acid
    202 rdf:type schema:DefinedTerm
    203 Nd21d74cb263e428493d708d9e2bf0d8c rdf:first sg:person.0756305244.18
    204 rdf:rest Ne96c09b93bd248f4b729194af61522e9
    205 Nd43c48b842804bdeb02943a54870bff6 rdf:first sg:person.01074261064.02
    206 rdf:rest rdf:nil
    207 Ne96c09b93bd248f4b729194af61522e9 rdf:first sg:person.013247535561.55
    208 rdf:rest Nd43c48b842804bdeb02943a54870bff6
    209 Nf3e5c43300624aaea9ceeb07a48a883e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Child
    211 rdf:type schema:DefinedTerm
    212 Nfb2978644fe84dc1b31b56c1901ad5e2 rdf:first sg:person.011126212334.85
    213 rdf:rest N5a2c1ccc77ff40ddacdfb5d64aab5b72
    214 Nfd307928d0004e7f94b1cbb35c830867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Infant, Newborn
    216 rdf:type schema:DefinedTerm
    217 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    218 schema:name Medical and Health Sciences
    219 rdf:type schema:DefinedTerm
    220 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Oncology and Carcinogenesis
    222 rdf:type schema:DefinedTerm
    223 sg:journal.1045337 schema:issn 2045-2322
    224 schema:name Scientific Reports
    225 schema:publisher Springer Nature
    226 rdf:type schema:Periodical
    227 sg:person.01074261064.02 schema:affiliation grid-institutes:grid.260539.b
    228 schema:familyName Ho
    229 schema:givenName Shinn-Ying
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074261064.02
    231 rdf:type schema:Person
    232 sg:person.011126212334.85 schema:affiliation grid-institutes:grid.260539.b
    233 schema:familyName Sathipati
    234 schema:givenName Srinivasulu Yerukala
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126212334.85
    236 rdf:type schema:Person
    237 sg:person.012730542625.65 schema:affiliation grid-institutes:grid.260770.4
    238 schema:familyName Sahu
    239 schema:givenName Divya
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730542625.65
    241 rdf:type schema:Person
    242 sg:person.013247535561.55 schema:affiliation grid-institutes:grid.260539.b
    243 schema:familyName Lin
    244 schema:givenName Yenching
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247535561.55
    246 rdf:type schema:Person
    247 sg:person.0756305244.18 schema:affiliation grid-institutes:grid.28665.3f
    248 schema:familyName Huang
    249 schema:givenName Hsuan-Cheng
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756305244.18
    251 rdf:type schema:Person
    252 sg:pub.10.1007/s00280-017-3238-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698235
    253 https://doi.org/10.1007/s00280-017-3238-4
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s11060-017-2667-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092955034
    256 https://doi.org/10.1007/s11060-017-2667-6
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s12035-017-0572-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085443679
    259 https://doi.org/10.1007/s12035-017-0572-9
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s12094-013-1030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007989337
    262 https://doi.org/10.1007/s12094-013-1030-4
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1023/a:1022627411411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005207849
    265 https://doi.org/10.1023/a:1022627411411
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/modpathol.2013.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047625289
    268 https://doi.org/10.1038/modpathol.2013.169
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/mp.2009.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045597748
    271 https://doi.org/10.1038/mp.2009.124
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/mp.2013.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013684034
    274 https://doi.org/10.1038/mp.2013.159
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nature03016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046183748
    277 https://doi.org/10.1038/nature03016
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nature07261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023388082
    280 https://doi.org/10.1038/nature07261
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nature10910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029505563
    283 https://doi.org/10.1038/nature10910
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nbt.3765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128636
    286 https://doi.org/10.1038/nbt.3765
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
    289 https://doi.org/10.1038/nprot.2008.211
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nrc1014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008818340
    292 https://doi.org/10.1038/nrc1014
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nrm1987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009107865
    295 https://doi.org/10.1038/nrm1987
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/s41598-017-07739-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091025318
    298 https://doi.org/10.1038/s41598-017-07739-y
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/s41598-018-27307-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412699
    301 https://doi.org/10.1038/s41598-018-27307-2
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/s41598-018-34604-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849828
    304 https://doi.org/10.1038/s41598-018-34604-3
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/srep00264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032998035
    307 https://doi.org/10.1038/srep00264
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/srep01689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031971047
    310 https://doi.org/10.1038/srep01689
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/1471-2105-9-310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015576304
    313 https://doi.org/10.1186/1471-2105-9-310
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/1471-2407-9-239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047830981
    316 https://doi.org/10.1186/1471-2407-9-239
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/s12864-016-3321-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035801891
    319 https://doi.org/10.1186/s12864-016-3321-y
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/s12943-016-0544-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053401210
    322 https://doi.org/10.1186/s12943-016-0544-0
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/s13046-014-0084-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014626323
    325 https://doi.org/10.1186/s13046-014-0084-7
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/s13046-015-0219-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031784936
    328 https://doi.org/10.1186/s13046-015-0219-5
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/s13148-015-0054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026858313
    331 https://doi.org/10.1186/s13148-015-0054-8
    332 rdf:type schema:CreativeWork
    333 grid-institutes:grid.260539.b schema:alternateName Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
    334 Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
    335 Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan
    336 schema:name Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
    337 Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
    338 Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
    339 Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
    340 Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan
    341 rdf:type schema:Organization
    342 grid-institutes:grid.260770.4 schema:alternateName Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
    343 schema:name Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
    344 rdf:type schema:Organization
    345 grid-institutes:grid.28665.3f schema:alternateName Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
    346 schema:name Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
    347 Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
    348 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...