Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-04

AUTHORS

Vadim Talalaev, Natalia Kryzhanovskaya, Jens W. Tomm, Viktoriia Rutckaia, Joerg Schilling, Alexey Zhukov

ABSTRACT

The development of a fast semiconductor laser is required for the realization of next-generation telecommunication applications. Since lasers operating on quantum dot ground state transitions exhibit only limited gain due to the saturation effect, we investigate lasing from excited states and compare its corresponding static and dynamic behavior to the one from the ground state. InAs quantum dots (QDs) grown in dot-in-well (DWELL) structures allowed to obtain light emission from ground and three excited states in a spectral range of 1.0–1.3 μm. This emission was coupled to whispering gallery modes (WGMs) of a 6 μm microdisk resonator and studied at room temperature by steady-state and time-resolved micro-photoluminescence. We demonstrate a cascade development of lasing arising from the ladder of quantum dot states, and compare the lasing behavior of ground and excited state emission. While the lasing threshold is being increased from the ground state to the highest excited state, the dynamic behavior is improved: turn-on times and lifetimes of WGMs become shorter paving the way towards high frequency direct driven microlasers. More... »

PAGES

5635

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41307-w

DOI

http://dx.doi.org/10.1038/s41598-019-41307-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113184982

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30948736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talalaev", 
        "givenName": "Vadim", 
        "id": "sg:person.0615207126.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint-Petersburg Academic University, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35135.31", 
          "name": [
            "Saint-Petersburg Academic University, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryzhanovskaya", 
        "givenName": "Natalia", 
        "id": "sg:person.014661303112.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661303112.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419569.6", 
          "name": [
            "Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomm", 
        "givenName": "Jens W.", 
        "id": "sg:person.013312125473.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013312125473.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rutckaia", 
        "givenName": "Viktoriia", 
        "id": "sg:person.014104317143.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104317143.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schilling", 
        "givenName": "Joerg", 
        "id": "sg:person.014037377704.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014037377704.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint-Petersburg Academic University, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35135.31", 
          "name": [
            "Saint-Petersburg Academic University, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukov", 
        "givenName": "Alexey", 
        "id": "sg:person.011315427765.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315427765.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2009.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042182102", 
          "https://doi.org/10.1038/nphoton.2009.237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001948009", 
          "https://doi.org/10.1038/nature06274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048419007", 
          "https://doi.org/10.1038/nphoton.2009.246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002101421", 
          "https://doi.org/10.1186/1556-276x-9-657"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-04", 
    "datePublishedReg": "2019-04-04", 
    "description": "The development of a fast semiconductor laser is required for the realization of next-generation telecommunication applications. Since lasers operating on quantum dot ground state transitions exhibit only limited gain due to the saturation effect, we investigate lasing from excited states and compare its corresponding static and dynamic behavior to the one from the ground state. InAs quantum dots (QDs) grown in dot-in-well (DWELL) structures allowed to obtain light emission from ground and three excited states in a spectral range of 1.0\u20131.3\u2009\u03bcm. This emission was coupled to whispering gallery modes (WGMs) of a 6\u2009\u03bcm microdisk resonator and studied at room temperature by steady-state and time-resolved micro-photoluminescence. We demonstrate a cascade development of lasing arising from the ladder of quantum dot states, and compare the lasing behavior of ground and excited state emission. While the lasing threshold is being increased from the ground state to the highest excited state, the dynamic behavior is improved: turn-on times and lifetimes of WGMs become shorter paving the way towards high frequency direct driven microlasers.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-019-41307-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8412007", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8023859", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "excited states", 
      "quantum dot ground state transition", 
      "ground state", 
      "quantum dots", 
      "dot ground state transition", 
      "quantum dot states", 
      "higher excited states", 
      "ground-state transition", 
      "excited state emission", 
      "InAs quantum dots", 
      "semiconductor lasers", 
      "well structures", 
      "microdisk resonators", 
      "lasing threshold", 
      "gallery modes", 
      "dot states", 
      "spectral range", 
      "cascade development", 
      "light emission", 
      "state emission", 
      "single dot", 
      "laser", 
      "dots", 
      "saturation effects", 
      "telecommunication applications", 
      "room temperature", 
      "emission", 
      "state transitions", 
      "microlasers", 
      "WGMs", 
      "microdisks", 
      "behavior of ground", 
      "state", 
      "resonator", 
      "broadband", 
      "lifetime", 
      "transition", 
      "realization", 
      "mode", 
      "dynamic behavior", 
      "ground", 
      "dynamics", 
      "temperature", 
      "high frequency", 
      "ladder", 
      "threshold", 
      "structure", 
      "frequency", 
      "range", 
      "behavior", 
      "applications", 
      "cascade", 
      "one", 
      "gain", 
      "effect", 
      "time", 
      "way", 
      "development", 
      "limited gains"
    ], 
    "name": "Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk", 
    "pagination": "5635", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113184982"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41307-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30948736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41307-w", 
      "https://app.dimensions.ai/details/publication/pub.1113184982"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_809.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-019-41307-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41307-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41307-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41307-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41307-w'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      89 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41307-w schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N5b1999bb7256469ea0dace63ca916053
4 schema:citation sg:pub.10.1038/nature06274
5 sg:pub.10.1038/nphoton.2009.237
6 sg:pub.10.1038/nphoton.2009.246
7 sg:pub.10.1186/1556-276x-9-657
8 schema:datePublished 2019-04-04
9 schema:datePublishedReg 2019-04-04
10 schema:description The development of a fast semiconductor laser is required for the realization of next-generation telecommunication applications. Since lasers operating on quantum dot ground state transitions exhibit only limited gain due to the saturation effect, we investigate lasing from excited states and compare its corresponding static and dynamic behavior to the one from the ground state. InAs quantum dots (QDs) grown in dot-in-well (DWELL) structures allowed to obtain light emission from ground and three excited states in a spectral range of 1.0–1.3 μm. This emission was coupled to whispering gallery modes (WGMs) of a 6 μm microdisk resonator and studied at room temperature by steady-state and time-resolved micro-photoluminescence. We demonstrate a cascade development of lasing arising from the ladder of quantum dot states, and compare the lasing behavior of ground and excited state emission. While the lasing threshold is being increased from the ground state to the highest excited state, the dynamic behavior is improved: turn-on times and lifetimes of WGMs become shorter paving the way towards high frequency direct driven microlasers.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N53f928ac0f614dbeaa96542881ae84d3
15 Nee19752f74bc43bab5771638acec21e4
16 sg:journal.1045337
17 schema:keywords InAs quantum dots
18 WGMs
19 applications
20 behavior
21 behavior of ground
22 broadband
23 cascade
24 cascade development
25 development
26 dot ground state transition
27 dot states
28 dots
29 dynamic behavior
30 dynamics
31 effect
32 emission
33 excited state emission
34 excited states
35 frequency
36 gain
37 gallery modes
38 ground
39 ground state
40 ground-state transition
41 high frequency
42 higher excited states
43 ladder
44 laser
45 lasing threshold
46 lifetime
47 light emission
48 limited gains
49 microdisk resonators
50 microdisks
51 microlasers
52 mode
53 one
54 quantum dot ground state transition
55 quantum dot states
56 quantum dots
57 range
58 realization
59 resonator
60 room temperature
61 saturation effects
62 semiconductor lasers
63 single dot
64 spectral range
65 state
66 state emission
67 state transitions
68 structure
69 telecommunication applications
70 temperature
71 threshold
72 time
73 transition
74 way
75 well structures
76 schema:name Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk
77 schema:pagination 5635
78 schema:productId N08d2fe424171416abfa7703430a353c7
79 N2e7637415a1849df91eefe98d52e3427
80 N54b2ad10063b405ea3cef8286e4b72f1
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113184982
82 https://doi.org/10.1038/s41598-019-41307-w
83 schema:sdDatePublished 2022-05-20T07:35
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N61d63e1a5a8e412a8df49e5e592bfae8
86 schema:url https://doi.org/10.1038/s41598-019-41307-w
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N08d2fe424171416abfa7703430a353c7 schema:name pubmed_id
91 schema:value 30948736
92 rdf:type schema:PropertyValue
93 N2e7637415a1849df91eefe98d52e3427 schema:name doi
94 schema:value 10.1038/s41598-019-41307-w
95 rdf:type schema:PropertyValue
96 N3322ab36a8c4447a824f3dea55eff67d rdf:first sg:person.014037377704.20
97 rdf:rest Nbb14bd0d5fe543ad85a99c946d9f894d
98 N53f928ac0f614dbeaa96542881ae84d3 schema:volumeNumber 9
99 rdf:type schema:PublicationVolume
100 N54b2ad10063b405ea3cef8286e4b72f1 schema:name dimensions_id
101 schema:value pub.1113184982
102 rdf:type schema:PropertyValue
103 N561b56b936c2457b8525ba1900f7be12 rdf:first sg:person.013312125473.62
104 rdf:rest Nc6b27ddd288b4b20a9efd1db7b7dc819
105 N5b1999bb7256469ea0dace63ca916053 rdf:first sg:person.0615207126.40
106 rdf:rest Nd8344001c2fb4b89a76ba7ed8692d3c1
107 N61d63e1a5a8e412a8df49e5e592bfae8 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nbb14bd0d5fe543ad85a99c946d9f894d rdf:first sg:person.011315427765.17
110 rdf:rest rdf:nil
111 Nc6b27ddd288b4b20a9efd1db7b7dc819 rdf:first sg:person.014104317143.27
112 rdf:rest N3322ab36a8c4447a824f3dea55eff67d
113 Nd8344001c2fb4b89a76ba7ed8692d3c1 rdf:first sg:person.014661303112.10
114 rdf:rest N561b56b936c2457b8525ba1900f7be12
115 Nee19752f74bc43bab5771638acec21e4 schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
121 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
122 rdf:type schema:DefinedTerm
123 sg:grant.8023859 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41307-w
124 rdf:type schema:MonetaryGrant
125 sg:grant.8412007 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41307-w
126 rdf:type schema:MonetaryGrant
127 sg:journal.1045337 schema:issn 2045-2322
128 schema:name Scientific Reports
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.011315427765.17 schema:affiliation grid-institutes:grid.35135.31
132 schema:familyName Zhukov
133 schema:givenName Alexey
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315427765.17
135 rdf:type schema:Person
136 sg:person.013312125473.62 schema:affiliation grid-institutes:grid.419569.6
137 schema:familyName Tomm
138 schema:givenName Jens W.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013312125473.62
140 rdf:type schema:Person
141 sg:person.014037377704.20 schema:affiliation grid-institutes:None
142 schema:familyName Schilling
143 schema:givenName Joerg
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014037377704.20
145 rdf:type schema:Person
146 sg:person.014104317143.27 schema:affiliation grid-institutes:None
147 schema:familyName Rutckaia
148 schema:givenName Viktoriia
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104317143.27
150 rdf:type schema:Person
151 sg:person.014661303112.10 schema:affiliation grid-institutes:grid.35135.31
152 schema:familyName Kryzhanovskaya
153 schema:givenName Natalia
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661303112.10
155 rdf:type schema:Person
156 sg:person.0615207126.40 schema:affiliation grid-institutes:None
157 schema:familyName Talalaev
158 schema:givenName Vadim
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40
160 rdf:type schema:Person
161 sg:pub.10.1038/nature06274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001948009
162 https://doi.org/10.1038/nature06274
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nphoton.2009.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042182102
165 https://doi.org/10.1038/nphoton.2009.237
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nphoton.2009.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048419007
168 https://doi.org/10.1038/nphoton.2009.246
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1556-276x-9-657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002101421
171 https://doi.org/10.1186/1556-276x-9-657
172 rdf:type schema:CreativeWork
173 grid-institutes:None schema:alternateName Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany
174 schema:name Martin-Luther University, Centre for Innovation Competence SiLi-nano, 06120, Halle, Germany
175 rdf:type schema:Organization
176 grid-institutes:grid.35135.31 schema:alternateName Saint-Petersburg Academic University, 194021, St. Petersburg, Russia
177 schema:name Saint-Petersburg Academic University, 194021, St. Petersburg, Russia
178 rdf:type schema:Organization
179 grid-institutes:grid.419569.6 schema:alternateName Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489, Berlin, Germany
180 schema:name Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489, Berlin, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...