Local-Field Corrections as a Regularization Method for the Spin-Boson Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

J. A. Crosse

ABSTRACT

The decoherence rate of a 'central spin' in a bosonic bath of magnetic fluctuations is computed using the spin-boson model. The magnetic fluctuations are treated in a fully quantum mechanical way by using the macroscopic quantum electrodynamics formalism and are expressed in terms of the classical electromagnetic Green's function of the system. The resulting frequency integral formally diverges but it can be regularized by applying real-cavity, local-field corrections to the location of the 'central spin'. This results in a cut-off function in terms of the magnetic permeability of the background material that leads to convergence at both high and low frequencies. This cut-off function appears naturally from the formalism and thus removes the need to rely on ad-hoc arguments to justify the form of the cut-off function. Furthermore, the magnetic permeability and the nature of interactions in quantum electrodynamics illuminate the connection between the two main models of 'central spin' decoherence, the spin-boson model and the spin-bath model, demonstrating how the two very different models are able to correctly model the same underlying physics. More... »

PAGES

5216

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41303-0

DOI

http://dx.doi.org/10.1038/s41598-019-41303-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112986764

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30914667


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University Shanghai", 
          "id": "https://www.grid.ac/institutes/grid.449457.f", 
          "name": [
            "Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Pudong, 200122, Shanghai, China", 
            "NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, 200062, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crosse", 
        "givenName": "J. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms5822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003065697", 
          "https://doi.org/10.1038/ncomms5822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.4094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003879014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.4094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003879014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10155-010-0092-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005882642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.033815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014215421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.033815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014215421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.023803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018676326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.023803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018676326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32484-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019915464", 
          "https://doi.org/10.1007/978-3-642-32484-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32484-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019915464", 
          "https://doi.org/10.1007/978-3-642-32484-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.105.079483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021910870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.042109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025169474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.042109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025169474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/10/028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032017439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(00)00249-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033947438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/45/15/154009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035765333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.253201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037818405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.253201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037818405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/10/8/083024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041516995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/21/s06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047652320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.013816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047927264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.013816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047927264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-057149-2.50010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051396496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01299a050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055790167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202619a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202619a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz2007676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056134023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz2007676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056134023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/80/1/016001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059033849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.83.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.83.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.4306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.4306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.153201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.153201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpca.7b10159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093099310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5019876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103753268"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The decoherence rate of a 'central spin' in a bosonic bath of magnetic fluctuations is computed using the spin-boson model. The magnetic fluctuations are treated in a fully quantum mechanical way by using the macroscopic quantum electrodynamics formalism and are expressed in terms of the classical electromagnetic Green's function of the system. The resulting frequency integral formally diverges but it can be regularized by applying real-cavity, local-field corrections to the location of the 'central spin'. This results in a cut-off function in terms of the magnetic permeability of the background material that leads to convergence at both high and low frequencies. This cut-off function appears naturally from the formalism and thus removes the need to rely on ad-hoc arguments to justify the form of the cut-off function. Furthermore, the magnetic permeability and the nature of interactions in quantum electrodynamics illuminate the connection between the two main models of 'central spin' decoherence, the spin-boson model and the spin-bath model, demonstrating how the two very different models are able to correctly model the same underlying physics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41303-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Local-Field Corrections as a Regularization Method for the Spin-Boson Model", 
    "pagination": "5216", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7a61789102a1f00008994a670ffbeb4671c34292e95f3f26c11c9e1add1d909d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30914667"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41303-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112986764"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41303-0", 
      "https://app.dimensions.ai/details/publication/pub.1112986764"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41303-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41303-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41303-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41303-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41303-0'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41303-0 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N0728ed863fb7446189671cf9401813d2
4 schema:citation sg:pub.10.1007/978-3-642-32484-0
5 sg:pub.10.1038/ncomms5822
6 https://doi.org/10.1016/b978-0-08-057149-2.50010-2
7 https://doi.org/10.1016/s0304-8853(00)00249-3
8 https://doi.org/10.1021/acs.jpca.7b10159
9 https://doi.org/10.1021/ja01299a050
10 https://doi.org/10.1021/jp202619a
11 https://doi.org/10.1021/jz2007676
12 https://doi.org/10.1063/1.5019876
13 https://doi.org/10.1088/0034-4885/80/1/016001
14 https://doi.org/10.1088/0953-4075/45/15/154009
15 https://doi.org/10.1088/0953-8984/17/10/028
16 https://doi.org/10.1088/0953-8984/18/21/s06
17 https://doi.org/10.1088/1367-2630/10/8/083024
18 https://doi.org/10.1103/physrev.83.34
19 https://doi.org/10.1103/physreva.43.467
20 https://doi.org/10.1103/physreva.46.4306
21 https://doi.org/10.1103/physreva.57.120
22 https://doi.org/10.1103/physreva.60.4094
23 https://doi.org/10.1103/physreva.70.013816
24 https://doi.org/10.1103/physreva.74.023803
25 https://doi.org/10.1103/physreva.75.042109
26 https://doi.org/10.1103/physreva.81.033815
27 https://doi.org/10.1103/physrevb.78.153201
28 https://doi.org/10.1103/physrevlett.100.253201
29 https://doi.org/10.1103/physrevlett.83.4204
30 https://doi.org/10.1103/revmodphys.59.1
31 https://doi.org/10.1529/biophysj.105.079483
32 https://doi.org/10.2478/v10155-010-0092-x
33 schema:datePublished 2019-12
34 schema:datePublishedReg 2019-12-01
35 schema:description The decoherence rate of a 'central spin' in a bosonic bath of magnetic fluctuations is computed using the spin-boson model. The magnetic fluctuations are treated in a fully quantum mechanical way by using the macroscopic quantum electrodynamics formalism and are expressed in terms of the classical electromagnetic Green's function of the system. The resulting frequency integral formally diverges but it can be regularized by applying real-cavity, local-field corrections to the location of the 'central spin'. This results in a cut-off function in terms of the magnetic permeability of the background material that leads to convergence at both high and low frequencies. This cut-off function appears naturally from the formalism and thus removes the need to rely on ad-hoc arguments to justify the form of the cut-off function. Furthermore, the magnetic permeability and the nature of interactions in quantum electrodynamics illuminate the connection between the two main models of 'central spin' decoherence, the spin-boson model and the spin-bath model, demonstrating how the two very different models are able to correctly model the same underlying physics.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N9cad8b29b05a495fb11e889be3ace45b
40 Nf47443f8168f4d8299debab9414ad425
41 sg:journal.1045337
42 schema:name Local-Field Corrections as a Regularization Method for the Spin-Boson Model
43 schema:pagination 5216
44 schema:productId N103031fabce54611a49b1c6557efeaa2
45 N1d223092362c4a5f92e0c58a148672fe
46 N2096961924c445bf85a2e1964812a33f
47 N7a83ab11b24e42f09bff7f7ba60c23bc
48 Nf23e87d7614c43f89e0220367cd15dc4
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112986764
50 https://doi.org/10.1038/s41598-019-41303-0
51 schema:sdDatePublished 2019-04-11T13:49
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N8666d6249c2e4653b35a61df4d76e21f
54 schema:url https://www.nature.com/articles/s41598-019-41303-0
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N02166231668a4527a803ea08d82a5fed schema:affiliation https://www.grid.ac/institutes/grid.449457.f
59 schema:familyName Crosse
60 schema:givenName J. A.
61 rdf:type schema:Person
62 N0728ed863fb7446189671cf9401813d2 rdf:first N02166231668a4527a803ea08d82a5fed
63 rdf:rest rdf:nil
64 N103031fabce54611a49b1c6557efeaa2 schema:name doi
65 schema:value 10.1038/s41598-019-41303-0
66 rdf:type schema:PropertyValue
67 N1d223092362c4a5f92e0c58a148672fe schema:name pubmed_id
68 schema:value 30914667
69 rdf:type schema:PropertyValue
70 N2096961924c445bf85a2e1964812a33f schema:name dimensions_id
71 schema:value pub.1112986764
72 rdf:type schema:PropertyValue
73 N7a83ab11b24e42f09bff7f7ba60c23bc schema:name nlm_unique_id
74 schema:value 101563288
75 rdf:type schema:PropertyValue
76 N8666d6249c2e4653b35a61df4d76e21f schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N9cad8b29b05a495fb11e889be3ace45b schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 Nf23e87d7614c43f89e0220367cd15dc4 schema:name readcube_id
81 schema:value 7a61789102a1f00008994a670ffbeb4671c34292e95f3f26c11c9e1add1d909d
82 rdf:type schema:PropertyValue
83 Nf47443f8168f4d8299debab9414ad425 schema:volumeNumber 9
84 rdf:type schema:PublicationVolume
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
89 schema:name Quantum Physics
90 rdf:type schema:DefinedTerm
91 sg:journal.1045337 schema:issn 2045-2322
92 schema:name Scientific Reports
93 rdf:type schema:Periodical
94 sg:pub.10.1007/978-3-642-32484-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019915464
95 https://doi.org/10.1007/978-3-642-32484-0
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/ncomms5822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003065697
98 https://doi.org/10.1038/ncomms5822
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/b978-0-08-057149-2.50010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051396496
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0304-8853(00)00249-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033947438
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/acs.jpca.7b10159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093099310
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/ja01299a050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055790167
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1021/jp202619a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056082783
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1021/jz2007676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056134023
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.5019876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103753268
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0034-4885/80/1/016001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059033849
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0953-4075/45/15/154009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035765333
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0953-8984/17/10/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032017439
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0953-8984/18/21/s06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047652320
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/1367-2630/10/8/083024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041516995
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrev.83.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458088
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreva.43.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483235
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physreva.46.4306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486240
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physreva.57.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048023467
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physreva.60.4094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003879014
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreva.70.013816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047927264
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreva.74.023803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018676326
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreva.75.042109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025169474
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreva.81.033815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014215421
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.78.153201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626330
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.100.253201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037818405
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.83.4204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820356
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/revmodphys.59.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839108
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1529/biophysj.105.079483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021910870
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2478/v10155-010-0092-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005882642
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.449457.f schema:alternateName New York University Shanghai
155 schema:name Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Pudong, 200122, Shanghai, China
156 NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, 200062, Shanghai, China
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...