Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Arnaud Bataille, Olivier Kwiatek, Salima Belfkhi, Lucile Mounier, Satya Parida, Mana Mahapatra, Alexandre Caron, Chobi Clement Chubwa, Julius Keyyu, Richard Kock, Bryony A. Jones, Geneviève Libeau

ABSTRACT

Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology. More... »

PAGES

4742

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y

DOI

http://dx.doi.org/10.1038/s41598-019-41232-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112880772

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30894600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bataille", 
        "givenName": "Arnaud", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwiatek", 
        "givenName": "Olivier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belfkhi", 
        "givenName": "Salima", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mounier", 
        "givenName": "Lucile", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirbright Institute", 
          "id": "https://www.grid.ac/institutes/grid.63622.33", 
          "name": [
            "The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Satya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirbright Institute", 
          "id": "https://www.grid.ac/institutes/grid.63622.33", 
          "name": [
            "The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahapatra", 
        "givenName": "Mana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eduardo Mondlane University", 
          "id": "https://www.grid.ac/institutes/grid.8295.6", 
          "name": [
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France", 
            "CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique", 
            "Faculdade de Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caron", 
        "givenName": "Alexandre", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ngorongoro District Council, Arusha, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chubwa", 
        "givenName": "Chobi Clement", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tanzania Wildlife Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.452871.d", 
          "name": [
            "Tanzania Wildlife Research Institute, Arusha, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keyyu", 
        "givenName": "Julius", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of London", 
          "id": "https://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "Royal Veterinary College, University of London, Hatfield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kock", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of London", 
          "id": "https://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "Royal Veterinary College, University of London, Hatfield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Bryony A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Libeau", 
        "givenName": "Genevi\u00e8ve", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jviromet.2010.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004579954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-008-9128-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005497115", 
          "https://doi.org/10.1007/s11250-008-9128-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009746195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/v6062287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010355591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1865-1682.2011.01270.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011029080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.aivir.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014605803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2014.08.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015263248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-0934(01)00386-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016988243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2015.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026714378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2112.150223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027348860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032194015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2012.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040043453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-422x-11-89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041397897", 
          "https://doi.org/10.1186/1743-422x-11-89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-010-9776-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042007671", 
          "https://doi.org/10.1007/s11250-010-9776-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jviromet.2010.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046570386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048878032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050927785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050987675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/1486824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052104372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/af.2014-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070883612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2304.161218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084429481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00705-017-3456-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090311710", 
          "https://doi.org/10.1007/s00705-017-3456-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00705-017-3456-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090311710", 
          "https://doi.org/10.1007/s00705-017-3456-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ve/vex022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090808893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/jgv.0.000944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092186418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-26851-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104336756", 
          "https://doi.org/10.1038/s41598-018-26851-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-018-1623-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104466387", 
          "https://doi.org/10.1007/s11250-018-1623-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-018-1623-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104466387", 
          "https://doi.org/10.1007/s11250-018-1623-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2408.170334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105030682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aav4096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107560064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41232-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3495373", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560319", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control", 
    "pagination": "4742", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db53b654443ec93ac0af2288e7d8035fa0a9d632e60c7731de58197b187b19cd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30894600"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41232-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112880772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41232-y", 
      "https://app.dimensions.ai/details/publication/pub.1112880772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41232-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41232-y schema:about anzsrc-for:11
2 anzsrc-for:1108
3 schema:author Nedaf47be64f343b08473f3ad24544311
4 schema:citation sg:pub.10.1007/s00705-017-3456-4
5 sg:pub.10.1007/s11250-008-9128-3
6 sg:pub.10.1007/s11250-010-9776-y
7 sg:pub.10.1007/s11250-018-1623-6
8 sg:pub.10.1038/s41598-018-26851-1
9 sg:pub.10.1186/1743-422x-11-89
10 https://doi.org/10.1016/bs.aivir.2016.02.001
11 https://doi.org/10.1016/j.jviromet.2010.01.014
12 https://doi.org/10.1016/j.jviromet.2010.11.022
13 https://doi.org/10.1016/j.vaccine.2019.01.057
14 https://doi.org/10.1016/j.vetmic.2012.12.013
15 https://doi.org/10.1016/j.vetmic.2014.08.031
16 https://doi.org/10.1016/j.vetmic.2015.08.009
17 https://doi.org/10.1016/s0166-0934(01)00386-x
18 https://doi.org/10.1093/ve/vex022
19 https://doi.org/10.1099/jgv.0.000944
20 https://doi.org/10.1111/j.1865-1682.2011.01270.x
21 https://doi.org/10.1111/tbed.12052
22 https://doi.org/10.1111/tbed.12229
23 https://doi.org/10.1111/tbed.12266
24 https://doi.org/10.1111/tbed.12600
25 https://doi.org/10.1126/science.aav4096
26 https://doi.org/10.1155/2016/1486824
27 https://doi.org/10.1371/journal.pone.0149982
28 https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2
29 https://doi.org/10.2527/af.2014-0003
30 https://doi.org/10.3201/eid2112.150223
31 https://doi.org/10.3201/eid2304.161218
32 https://doi.org/10.3201/eid2408.170334
33 https://doi.org/10.3390/v6062287
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf Nc0ef5c7e42084879bcb471647cff0d96
41 Nc10f39068faa46c08137de42902b4c37
42 sg:journal.1045337
43 schema:name Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control
44 schema:pagination 4742
45 schema:productId N0d9bd9a4a9df477991fd02e240107e0e
46 N1381889a89c84dbebf9ad2c84a754338
47 N5b6a7cbf44f54b14ac139a7c9e806d35
48 N6c8a0c56bfc84d0e8ebe5e8dc990cdc4
49 N86da43f4bfcf4ea3af8dba426a5cf960
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112880772
51 https://doi.org/10.1038/s41598-019-41232-y
52 schema:sdDatePublished 2019-04-11T13:18
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nce70621374f440c6b8937708b77c0627
55 schema:url https://www.nature.com/articles/s41598-019-41232-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N07345e31cea04faaaca2a0e651b27816 rdf:first Ne676b22f938f4d29a506a4b34fb44bd1
60 rdf:rest Nb2f15e510fef4142873926ca330caa18
61 N0d9bd9a4a9df477991fd02e240107e0e schema:name nlm_unique_id
62 schema:value 101563288
63 rdf:type schema:PropertyValue
64 N137bf1f6f1e14cedb9418708001111bb schema:affiliation https://www.grid.ac/institutes/grid.121334.6
65 schema:familyName Libeau
66 schema:givenName Geneviève
67 rdf:type schema:Person
68 N1381889a89c84dbebf9ad2c84a754338 schema:name dimensions_id
69 schema:value pub.1112880772
70 rdf:type schema:PropertyValue
71 N33d9a681230d4177a53e2e9b2dfec1d3 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
72 schema:familyName Bataille
73 schema:givenName Arnaud
74 rdf:type schema:Person
75 N4e3d4ca489ef4b8297a91e92be6e9b5d schema:affiliation https://www.grid.ac/institutes/grid.8295.6
76 schema:familyName Caron
77 schema:givenName Alexandre
78 rdf:type schema:Person
79 N5aa5f1f55c6449f88945ebfd51ee4d56 rdf:first N6b9f42205b6848a9b63f5deea1f4f71d
80 rdf:rest N648ed36f2d9c444982af191d73d04486
81 N5b6a7cbf44f54b14ac139a7c9e806d35 schema:name doi
82 schema:value 10.1038/s41598-019-41232-y
83 rdf:type schema:PropertyValue
84 N648ed36f2d9c444982af191d73d04486 rdf:first Nd8b81e8bfdfb475286840c7fb230a5c5
85 rdf:rest Neeab9ccdaaec4d7684b2e80e726d234a
86 N655335a5ff2643c781023396f317cb1d schema:name Ngorongoro District Council, Arusha, Tanzania
87 rdf:type schema:Organization
88 N65b9151d7e2b4fb08e634b0973cf9dc7 rdf:first Nb675ef8144fd454590c54df6adefa30a
89 rdf:rest N7e0b9f0ff065427abfa8d624452d176a
90 N6b9f42205b6848a9b63f5deea1f4f71d schema:affiliation N655335a5ff2643c781023396f317cb1d
91 schema:familyName Chubwa
92 schema:givenName Chobi Clement
93 rdf:type schema:Person
94 N6c8a0c56bfc84d0e8ebe5e8dc990cdc4 schema:name readcube_id
95 schema:value db53b654443ec93ac0af2288e7d8035fa0a9d632e60c7731de58197b187b19cd
96 rdf:type schema:PropertyValue
97 N754108d16fb148bf84fb640401ce621f schema:affiliation https://www.grid.ac/institutes/grid.4464.2
98 schema:familyName Jones
99 schema:givenName Bryony A.
100 rdf:type schema:Person
101 N7e0b9f0ff065427abfa8d624452d176a rdf:first Ncc54287f79394eb9b47e4dd29b0cd04e
102 rdf:rest N07345e31cea04faaaca2a0e651b27816
103 N82fbb78bcd884f3bab9766ad7bee90f6 rdf:first N754108d16fb148bf84fb640401ce621f
104 rdf:rest Nc4fa4d2de4c8465191fa7ed2481371f6
105 N86da43f4bfcf4ea3af8dba426a5cf960 schema:name pubmed_id
106 schema:value 30894600
107 rdf:type schema:PropertyValue
108 N9520919763b1460c85619be13f928fa8 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
109 schema:familyName Kwiatek
110 schema:givenName Olivier
111 rdf:type schema:Person
112 Nb2f15e510fef4142873926ca330caa18 rdf:first Nd05dce7b812f4033be2a2b33436694ea
113 rdf:rest Nbe0a487867494f7b9f17ef67676670a3
114 Nb675ef8144fd454590c54df6adefa30a schema:affiliation https://www.grid.ac/institutes/grid.121334.6
115 schema:familyName Belfkhi
116 schema:givenName Salima
117 rdf:type schema:Person
118 Nbe0a487867494f7b9f17ef67676670a3 rdf:first N4e3d4ca489ef4b8297a91e92be6e9b5d
119 rdf:rest N5aa5f1f55c6449f88945ebfd51ee4d56
120 Nc0ef5c7e42084879bcb471647cff0d96 schema:volumeNumber 9
121 rdf:type schema:PublicationVolume
122 Nc10f39068faa46c08137de42902b4c37 schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 Nc4fa4d2de4c8465191fa7ed2481371f6 rdf:first N137bf1f6f1e14cedb9418708001111bb
125 rdf:rest rdf:nil
126 Nc8ad90c7fffb4fe48172a00dd9dd6c1c rdf:first N9520919763b1460c85619be13f928fa8
127 rdf:rest N65b9151d7e2b4fb08e634b0973cf9dc7
128 Ncc54287f79394eb9b47e4dd29b0cd04e schema:affiliation https://www.grid.ac/institutes/grid.121334.6
129 schema:familyName Mounier
130 schema:givenName Lucile
131 rdf:type schema:Person
132 Nce70621374f440c6b8937708b77c0627 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 Nd05dce7b812f4033be2a2b33436694ea schema:affiliation https://www.grid.ac/institutes/grid.63622.33
135 schema:familyName Mahapatra
136 schema:givenName Mana
137 rdf:type schema:Person
138 Nd3185210a5b44d7db7201f27310b8639 schema:affiliation https://www.grid.ac/institutes/grid.4464.2
139 schema:familyName Kock
140 schema:givenName Richard
141 rdf:type schema:Person
142 Nd8b81e8bfdfb475286840c7fb230a5c5 schema:affiliation https://www.grid.ac/institutes/grid.452871.d
143 schema:familyName Keyyu
144 schema:givenName Julius
145 rdf:type schema:Person
146 Ne676b22f938f4d29a506a4b34fb44bd1 schema:affiliation https://www.grid.ac/institutes/grid.63622.33
147 schema:familyName Parida
148 schema:givenName Satya
149 rdf:type schema:Person
150 Nedaf47be64f343b08473f3ad24544311 rdf:first N33d9a681230d4177a53e2e9b2dfec1d3
151 rdf:rest Nc8ad90c7fffb4fe48172a00dd9dd6c1c
152 Neeab9ccdaaec4d7684b2e80e726d234a rdf:first Nd3185210a5b44d7db7201f27310b8639
153 rdf:rest N82fbb78bcd884f3bab9766ad7bee90f6
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical Microbiology
159 rdf:type schema:DefinedTerm
160 sg:grant.3495373 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41232-y
161 rdf:type schema:MonetaryGrant
162 sg:grant.3560319 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41232-y
163 rdf:type schema:MonetaryGrant
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 rdf:type schema:Periodical
167 sg:pub.10.1007/s00705-017-3456-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090311710
168 https://doi.org/10.1007/s00705-017-3456-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11250-008-9128-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005497115
171 https://doi.org/10.1007/s11250-008-9128-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11250-010-9776-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042007671
174 https://doi.org/10.1007/s11250-010-9776-y
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s11250-018-1623-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104466387
177 https://doi.org/10.1007/s11250-018-1623-6
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/s41598-018-26851-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104336756
180 https://doi.org/10.1038/s41598-018-26851-1
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1743-422x-11-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041397897
183 https://doi.org/10.1186/1743-422x-11-89
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/bs.aivir.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014605803
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jviromet.2010.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046570386
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jviromet.2010.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004579954
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.vaccine.2019.01.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112089079
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.vetmic.2012.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040043453
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.vetmic.2014.08.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015263248
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.vetmic.2015.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714378
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0166-0934(01)00386-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016988243
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/ve/vex022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090808893
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1099/jgv.0.000944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092186418
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1865-1682.2011.01270.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011029080
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/tbed.12052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050927785
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/tbed.12229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050987675
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/tbed.12266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048878032
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/tbed.12600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009746195
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.aav4096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107560064
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1155/2016/1486824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052104372
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0149982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033150967
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032194015
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2527/af.2014-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883612
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3201/eid2112.150223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027348860
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3201/eid2304.161218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084429481
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3201/eid2408.170334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105030682
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3390/v6062287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010355591
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
234 schema:name ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
235 CIRAD, UMR ASTRE, F-34398, Montpellier, France
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4464.2 schema:alternateName University of London
238 schema:name Royal Veterinary College, University of London, Hatfield, UK
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.452871.d schema:alternateName Tanzania Wildlife Research Institute
241 schema:name Tanzania Wildlife Research Institute, Arusha, Tanzania
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.63622.33 schema:alternateName Pirbright Institute
244 schema:name The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.8295.6 schema:alternateName Eduardo Mondlane University
247 schema:name ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
248 CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique
249 Faculdade de Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...