Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Arnaud Bataille, Olivier Kwiatek, Salima Belfkhi, Lucile Mounier, Satya Parida, Mana Mahapatra, Alexandre Caron, Chobi Clement Chubwa, Julius Keyyu, Richard Kock, Bryony A. Jones, Geneviève Libeau

ABSTRACT

Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology. More... »

PAGES

4742

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y

DOI

http://dx.doi.org/10.1038/s41598-019-41232-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112880772

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30894600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bataille", 
        "givenName": "Arnaud", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwiatek", 
        "givenName": "Olivier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belfkhi", 
        "givenName": "Salima", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mounier", 
        "givenName": "Lucile", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirbright Institute", 
          "id": "https://www.grid.ac/institutes/grid.63622.33", 
          "name": [
            "The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Satya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirbright Institute", 
          "id": "https://www.grid.ac/institutes/grid.63622.33", 
          "name": [
            "The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahapatra", 
        "givenName": "Mana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eduardo Mondlane University", 
          "id": "https://www.grid.ac/institutes/grid.8295.6", 
          "name": [
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France", 
            "CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique", 
            "Faculdade de Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caron", 
        "givenName": "Alexandre", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ngorongoro District Council, Arusha, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chubwa", 
        "givenName": "Chobi Clement", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tanzania Wildlife Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.452871.d", 
          "name": [
            "Tanzania Wildlife Research Institute, Arusha, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keyyu", 
        "givenName": "Julius", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of London", 
          "id": "https://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "Royal Veterinary College, University of London, Hatfield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kock", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of London", 
          "id": "https://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "Royal Veterinary College, University of London, Hatfield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Bryony A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Libeau", 
        "givenName": "Genevi\u00e8ve", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jviromet.2010.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004579954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-008-9128-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005497115", 
          "https://doi.org/10.1007/s11250-008-9128-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009746195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/v6062287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010355591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1865-1682.2011.01270.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011029080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.aivir.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014605803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2014.08.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015263248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-0934(01)00386-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016988243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2015.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026714378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2112.150223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027348860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032194015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2012.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040043453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-422x-11-89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041397897", 
          "https://doi.org/10.1186/1743-422x-11-89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-010-9776-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042007671", 
          "https://doi.org/10.1007/s11250-010-9776-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jviromet.2010.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046570386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048878032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050927785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050987675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/1486824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052104372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/af.2014-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070883612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2304.161218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084429481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00705-017-3456-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090311710", 
          "https://doi.org/10.1007/s00705-017-3456-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00705-017-3456-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090311710", 
          "https://doi.org/10.1007/s00705-017-3456-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ve/vex022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090808893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/jgv.0.000944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092186418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-26851-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104336756", 
          "https://doi.org/10.1038/s41598-018-26851-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-018-1623-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104466387", 
          "https://doi.org/10.1007/s11250-018-1623-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-018-1623-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104466387", 
          "https://doi.org/10.1007/s11250-018-1623-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2408.170334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105030682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aav4096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107560064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41232-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3495373", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560319", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control", 
    "pagination": "4742", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db53b654443ec93ac0af2288e7d8035fa0a9d632e60c7731de58197b187b19cd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30894600"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41232-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112880772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41232-y", 
      "https://app.dimensions.ai/details/publication/pub.1112880772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41232-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41232-y schema:about anzsrc-for:11
2 anzsrc-for:1108
3 schema:author N4da6b622893b459d9c851d708a7aaf31
4 schema:citation sg:pub.10.1007/s00705-017-3456-4
5 sg:pub.10.1007/s11250-008-9128-3
6 sg:pub.10.1007/s11250-010-9776-y
7 sg:pub.10.1007/s11250-018-1623-6
8 sg:pub.10.1038/s41598-018-26851-1
9 sg:pub.10.1186/1743-422x-11-89
10 https://doi.org/10.1016/bs.aivir.2016.02.001
11 https://doi.org/10.1016/j.jviromet.2010.01.014
12 https://doi.org/10.1016/j.jviromet.2010.11.022
13 https://doi.org/10.1016/j.vaccine.2019.01.057
14 https://doi.org/10.1016/j.vetmic.2012.12.013
15 https://doi.org/10.1016/j.vetmic.2014.08.031
16 https://doi.org/10.1016/j.vetmic.2015.08.009
17 https://doi.org/10.1016/s0166-0934(01)00386-x
18 https://doi.org/10.1093/ve/vex022
19 https://doi.org/10.1099/jgv.0.000944
20 https://doi.org/10.1111/j.1865-1682.2011.01270.x
21 https://doi.org/10.1111/tbed.12052
22 https://doi.org/10.1111/tbed.12229
23 https://doi.org/10.1111/tbed.12266
24 https://doi.org/10.1111/tbed.12600
25 https://doi.org/10.1126/science.aav4096
26 https://doi.org/10.1155/2016/1486824
27 https://doi.org/10.1371/journal.pone.0149982
28 https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2
29 https://doi.org/10.2527/af.2014-0003
30 https://doi.org/10.3201/eid2112.150223
31 https://doi.org/10.3201/eid2304.161218
32 https://doi.org/10.3201/eid2408.170334
33 https://doi.org/10.3390/v6062287
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N05e18cdde6724a3ca9c524a49a452f4e
41 N239031def0c541ce9ebc09db5a5a8e2d
42 sg:journal.1045337
43 schema:name Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control
44 schema:pagination 4742
45 schema:productId N07b6345fc779469d8045889143b3cc88
46 N1942dc5d78e94af3b2daedca8948664c
47 N1ae11bd02ce34b7fb55eb5f5c0d8e1f7
48 N9e134fb928b4401ab80604a317df1a59
49 Nce1128ebfd6646ad918a0bf579324dd4
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112880772
51 https://doi.org/10.1038/s41598-019-41232-y
52 schema:sdDatePublished 2019-04-11T13:18
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nee3c39c14cb2471ba3a2710a417b534a
55 schema:url https://www.nature.com/articles/s41598-019-41232-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N02b79a5ca11a4cc2a6940570dcb9365a rdf:first Ne271ef892e6a47099c34943abffc35da
60 rdf:rest N8ce2f4222f2e4546851a3b8d40aeb4e0
61 N05e18cdde6724a3ca9c524a49a452f4e schema:volumeNumber 9
62 rdf:type schema:PublicationVolume
63 N0709e2b3be2a4257b1f927cef5606a3a rdf:first N57adab7c2cb54612994a26ffae062c2d
64 rdf:rest Ne0d3e6b3087243cd84a0cc4b0a143ac6
65 N07b6345fc779469d8045889143b3cc88 schema:name pubmed_id
66 schema:value 30894600
67 rdf:type schema:PropertyValue
68 N1942dc5d78e94af3b2daedca8948664c schema:name doi
69 schema:value 10.1038/s41598-019-41232-y
70 rdf:type schema:PropertyValue
71 N1ab87905f4584b7e8c73818844d03a1a schema:affiliation https://www.grid.ac/institutes/grid.121334.6
72 schema:familyName Mounier
73 schema:givenName Lucile
74 rdf:type schema:Person
75 N1ae11bd02ce34b7fb55eb5f5c0d8e1f7 schema:name nlm_unique_id
76 schema:value 101563288
77 rdf:type schema:PropertyValue
78 N1b3e2850b9664336a258fcb22fc920e5 schema:affiliation https://www.grid.ac/institutes/grid.63622.33
79 schema:familyName Mahapatra
80 schema:givenName Mana
81 rdf:type schema:Person
82 N239031def0c541ce9ebc09db5a5a8e2d schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N28977e9473274d769bf8d7f741551eb9 schema:affiliation https://www.grid.ac/institutes/grid.4464.2
85 schema:familyName Jones
86 schema:givenName Bryony A.
87 rdf:type schema:Person
88 N2ce14fa47f034971a615e627de382fb7 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
89 schema:familyName Kwiatek
90 schema:givenName Olivier
91 rdf:type schema:Person
92 N3568bc7ce260419689964d397ec84e73 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
93 schema:familyName Libeau
94 schema:givenName Geneviève
95 rdf:type schema:Person
96 N3a9f7999ae834dd2aa706778daddc122 rdf:first N1ab87905f4584b7e8c73818844d03a1a
97 rdf:rest N0709e2b3be2a4257b1f927cef5606a3a
98 N4da6b622893b459d9c851d708a7aaf31 rdf:first Ne9dd6a6964554632898f0b195f0d04a9
99 rdf:rest N8fc494596e884585bad7251f4adbb55a
100 N53d0a69d93334b09a6a066475eac8e32 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
101 schema:familyName Belfkhi
102 schema:givenName Salima
103 rdf:type schema:Person
104 N57adab7c2cb54612994a26ffae062c2d schema:affiliation https://www.grid.ac/institutes/grid.63622.33
105 schema:familyName Parida
106 schema:givenName Satya
107 rdf:type schema:Person
108 N684e06dcfcaf4b958bfc87688db09c87 rdf:first N28977e9473274d769bf8d7f741551eb9
109 rdf:rest N9fdda59cfcd34a7786939a629ff9ae75
110 N82b7b18785714e2b8a7e4a0338c48a30 schema:name Ngorongoro District Council, Arusha, Tanzania
111 rdf:type schema:Organization
112 N8b5614446f4c4f4285c325ec7d0c3bcf rdf:first Nf81dfd10c2094227a1ff9b8ab2a2b3fd
113 rdf:rest N684e06dcfcaf4b958bfc87688db09c87
114 N8ce2f4222f2e4546851a3b8d40aeb4e0 rdf:first Ncbe4e435990d442b90afd54a864ab53e
115 rdf:rest N8b5614446f4c4f4285c325ec7d0c3bcf
116 N8fc494596e884585bad7251f4adbb55a rdf:first N2ce14fa47f034971a615e627de382fb7
117 rdf:rest N98cc0f83418242eea2770b0dddd04b48
118 N98cc0f83418242eea2770b0dddd04b48 rdf:first N53d0a69d93334b09a6a066475eac8e32
119 rdf:rest N3a9f7999ae834dd2aa706778daddc122
120 N99a01111a2074949ab3c8fcef990d573 rdf:first Nd879f5457edd4f46a1db63dc12b0b39e
121 rdf:rest N02b79a5ca11a4cc2a6940570dcb9365a
122 N9e134fb928b4401ab80604a317df1a59 schema:name dimensions_id
123 schema:value pub.1112880772
124 rdf:type schema:PropertyValue
125 N9fdda59cfcd34a7786939a629ff9ae75 rdf:first N3568bc7ce260419689964d397ec84e73
126 rdf:rest rdf:nil
127 Ncbe4e435990d442b90afd54a864ab53e schema:affiliation https://www.grid.ac/institutes/grid.452871.d
128 schema:familyName Keyyu
129 schema:givenName Julius
130 rdf:type schema:Person
131 Nce1128ebfd6646ad918a0bf579324dd4 schema:name readcube_id
132 schema:value db53b654443ec93ac0af2288e7d8035fa0a9d632e60c7731de58197b187b19cd
133 rdf:type schema:PropertyValue
134 Nd879f5457edd4f46a1db63dc12b0b39e schema:affiliation https://www.grid.ac/institutes/grid.8295.6
135 schema:familyName Caron
136 schema:givenName Alexandre
137 rdf:type schema:Person
138 Ne0d3e6b3087243cd84a0cc4b0a143ac6 rdf:first N1b3e2850b9664336a258fcb22fc920e5
139 rdf:rest N99a01111a2074949ab3c8fcef990d573
140 Ne271ef892e6a47099c34943abffc35da schema:affiliation N82b7b18785714e2b8a7e4a0338c48a30
141 schema:familyName Chubwa
142 schema:givenName Chobi Clement
143 rdf:type schema:Person
144 Ne9dd6a6964554632898f0b195f0d04a9 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
145 schema:familyName Bataille
146 schema:givenName Arnaud
147 rdf:type schema:Person
148 Nee3c39c14cb2471ba3a2710a417b534a schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nf81dfd10c2094227a1ff9b8ab2a2b3fd schema:affiliation https://www.grid.ac/institutes/grid.4464.2
151 schema:familyName Kock
152 schema:givenName Richard
153 rdf:type schema:Person
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical Microbiology
159 rdf:type schema:DefinedTerm
160 sg:grant.3495373 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41232-y
161 rdf:type schema:MonetaryGrant
162 sg:grant.3560319 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41232-y
163 rdf:type schema:MonetaryGrant
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 rdf:type schema:Periodical
167 sg:pub.10.1007/s00705-017-3456-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090311710
168 https://doi.org/10.1007/s00705-017-3456-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11250-008-9128-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005497115
171 https://doi.org/10.1007/s11250-008-9128-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11250-010-9776-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042007671
174 https://doi.org/10.1007/s11250-010-9776-y
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s11250-018-1623-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104466387
177 https://doi.org/10.1007/s11250-018-1623-6
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/s41598-018-26851-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104336756
180 https://doi.org/10.1038/s41598-018-26851-1
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1743-422x-11-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041397897
183 https://doi.org/10.1186/1743-422x-11-89
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/bs.aivir.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014605803
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jviromet.2010.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046570386
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jviromet.2010.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004579954
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.vaccine.2019.01.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112089079
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.vetmic.2012.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040043453
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.vetmic.2014.08.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015263248
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.vetmic.2015.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714378
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0166-0934(01)00386-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016988243
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/ve/vex022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090808893
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1099/jgv.0.000944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092186418
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1865-1682.2011.01270.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011029080
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/tbed.12052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050927785
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/tbed.12229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050987675
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/tbed.12266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048878032
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/tbed.12600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009746195
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.aav4096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107560064
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1155/2016/1486824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052104372
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0149982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033150967
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032194015
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2527/af.2014-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883612
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3201/eid2112.150223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027348860
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3201/eid2304.161218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084429481
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3201/eid2408.170334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105030682
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3390/v6062287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010355591
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
234 schema:name ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
235 CIRAD, UMR ASTRE, F-34398, Montpellier, France
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4464.2 schema:alternateName University of London
238 schema:name Royal Veterinary College, University of London, Hatfield, UK
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.452871.d schema:alternateName Tanzania Wildlife Research Institute
241 schema:name Tanzania Wildlife Research Institute, Arusha, Tanzania
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.63622.33 schema:alternateName Pirbright Institute
244 schema:name The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.8295.6 schema:alternateName Eduardo Mondlane University
247 schema:name ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
248 CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique
249 Faculdade de Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...