Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Arnaud Bataille, Olivier Kwiatek, Salima Belfkhi, Lucile Mounier, Satya Parida, Mana Mahapatra, Alexandre Caron, Chobi Clement Chubwa, Julius Keyyu, Richard Kock, Bryony A. Jones, Geneviève Libeau

ABSTRACT

Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology. More... »

PAGES

4742

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y

DOI

http://dx.doi.org/10.1038/s41598-019-41232-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112880772

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30894600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bataille", 
        "givenName": "Arnaud", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwiatek", 
        "givenName": "Olivier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belfkhi", 
        "givenName": "Salima", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mounier", 
        "givenName": "Lucile", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirbright Institute", 
          "id": "https://www.grid.ac/institutes/grid.63622.33", 
          "name": [
            "The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Satya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirbright Institute", 
          "id": "https://www.grid.ac/institutes/grid.63622.33", 
          "name": [
            "The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahapatra", 
        "givenName": "Mana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eduardo Mondlane University", 
          "id": "https://www.grid.ac/institutes/grid.8295.6", 
          "name": [
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France", 
            "CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique", 
            "Faculdade de Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caron", 
        "givenName": "Alexandre", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ngorongoro District Council, Arusha, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chubwa", 
        "givenName": "Chobi Clement", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tanzania Wildlife Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.452871.d", 
          "name": [
            "Tanzania Wildlife Research Institute, Arusha, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keyyu", 
        "givenName": "Julius", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of London", 
          "id": "https://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "Royal Veterinary College, University of London, Hatfield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kock", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of London", 
          "id": "https://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "Royal Veterinary College, University of London, Hatfield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Bryony A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "CIRAD, UMR ASTRE, F-34398, Montpellier, France", 
            "ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Libeau", 
        "givenName": "Genevi\u00e8ve", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jviromet.2010.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004579954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-008-9128-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005497115", 
          "https://doi.org/10.1007/s11250-008-9128-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009746195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/v6062287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010355591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1865-1682.2011.01270.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011029080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.aivir.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014605803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2014.08.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015263248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-0934(01)00386-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016988243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2015.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026714378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2112.150223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027348860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032194015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vetmic.2012.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040043453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-422x-11-89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041397897", 
          "https://doi.org/10.1186/1743-422x-11-89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-010-9776-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042007671", 
          "https://doi.org/10.1007/s11250-010-9776-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jviromet.2010.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046570386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048878032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050927785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbed.12229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050987675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/1486824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052104372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/af.2014-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070883612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2304.161218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084429481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00705-017-3456-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090311710", 
          "https://doi.org/10.1007/s00705-017-3456-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00705-017-3456-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090311710", 
          "https://doi.org/10.1007/s00705-017-3456-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ve/vex022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090808893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/jgv.0.000944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092186418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-26851-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104336756", 
          "https://doi.org/10.1038/s41598-018-26851-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-018-1623-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104466387", 
          "https://doi.org/10.1007/s11250-018-1623-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11250-018-1623-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104466387", 
          "https://doi.org/10.1007/s11250-018-1623-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2408.170334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105030682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aav4096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107560064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2019.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112089079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41232-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3495373", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560319", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control", 
    "pagination": "4742", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db53b654443ec93ac0af2288e7d8035fa0a9d632e60c7731de58197b187b19cd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30894600"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41232-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112880772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41232-y", 
      "https://app.dimensions.ai/details/publication/pub.1112880772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41232-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41232-y'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41232-y schema:about anzsrc-for:11
2 anzsrc-for:1108
3 schema:author N60f4e2282ba2440884cad4875a70a642
4 schema:citation sg:pub.10.1007/s00705-017-3456-4
5 sg:pub.10.1007/s11250-008-9128-3
6 sg:pub.10.1007/s11250-010-9776-y
7 sg:pub.10.1007/s11250-018-1623-6
8 sg:pub.10.1038/s41598-018-26851-1
9 sg:pub.10.1186/1743-422x-11-89
10 https://doi.org/10.1016/bs.aivir.2016.02.001
11 https://doi.org/10.1016/j.jviromet.2010.01.014
12 https://doi.org/10.1016/j.jviromet.2010.11.022
13 https://doi.org/10.1016/j.vaccine.2019.01.057
14 https://doi.org/10.1016/j.vetmic.2012.12.013
15 https://doi.org/10.1016/j.vetmic.2014.08.031
16 https://doi.org/10.1016/j.vetmic.2015.08.009
17 https://doi.org/10.1016/s0166-0934(01)00386-x
18 https://doi.org/10.1093/ve/vex022
19 https://doi.org/10.1099/jgv.0.000944
20 https://doi.org/10.1111/j.1865-1682.2011.01270.x
21 https://doi.org/10.1111/tbed.12052
22 https://doi.org/10.1111/tbed.12229
23 https://doi.org/10.1111/tbed.12266
24 https://doi.org/10.1111/tbed.12600
25 https://doi.org/10.1126/science.aav4096
26 https://doi.org/10.1155/2016/1486824
27 https://doi.org/10.1371/journal.pone.0149982
28 https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2
29 https://doi.org/10.2527/af.2014-0003
30 https://doi.org/10.3201/eid2112.150223
31 https://doi.org/10.3201/eid2304.161218
32 https://doi.org/10.3201/eid2408.170334
33 https://doi.org/10.3390/v6062287
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N43bfbe522195435c9008caf4703e8a8a
41 N6180aa70f64c424b9ebf012b72c8c9fe
42 sg:journal.1045337
43 schema:name Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control
44 schema:pagination 4742
45 schema:productId N1ba89048b35e482f940aed932894bfa8
46 N363f0192f3c1406083bdad48632e23ba
47 N493e3cc044e24b5fbb9f5010f2b2ff86
48 N9509611d5b9f464aa96004c7b2b5a959
49 Nf55a33b19c6b4fe6bc245e1a34073d34
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112880772
51 https://doi.org/10.1038/s41598-019-41232-y
52 schema:sdDatePublished 2019-04-11T13:18
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N5d66e8932bbe4226857ee40993db2322
55 schema:url https://www.nature.com/articles/s41598-019-41232-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0d953beab689480c83dc2acb10f923d5 rdf:first N1d8be53f32e642228af10f2df4d35ac8
60 rdf:rest Nd85a479d46bd425d875a7ab22d799f13
61 N121c02dcf8694c449efe4ba8d37c542a schema:affiliation https://www.grid.ac/institutes/grid.121334.6
62 schema:familyName Bataille
63 schema:givenName Arnaud
64 rdf:type schema:Person
65 N170e4426d76c49e984852b9a67bc093f rdf:first Ndeaa01a9cf7941bc805827082b7d0862
66 rdf:rest N2c559b64ba9d403186fce31a670ce5fd
67 N18e497c284a5466e84409732ccef3c7e schema:name Ngorongoro District Council, Arusha, Tanzania
68 rdf:type schema:Organization
69 N193a95fd24354979acba3143b17287f5 rdf:first N31582d669d1b4a7389fc524cff49ba8d
70 rdf:rest N96320df755cc4c2dbc7d8a9f1578dd53
71 N1ba89048b35e482f940aed932894bfa8 schema:name readcube_id
72 schema:value db53b654443ec93ac0af2288e7d8035fa0a9d632e60c7731de58197b187b19cd
73 rdf:type schema:PropertyValue
74 N1d8be53f32e642228af10f2df4d35ac8 schema:affiliation https://www.grid.ac/institutes/grid.8295.6
75 schema:familyName Caron
76 schema:givenName Alexandre
77 rdf:type schema:Person
78 N2c559b64ba9d403186fce31a670ce5fd rdf:first N3453b78ed79f4c5b9af3fbc042bd54cc
79 rdf:rest N704ec08aeb52457280fc14fc68829263
80 N31582d669d1b4a7389fc524cff49ba8d schema:affiliation https://www.grid.ac/institutes/grid.4464.2
81 schema:familyName Jones
82 schema:givenName Bryony A.
83 rdf:type schema:Person
84 N3453b78ed79f4c5b9af3fbc042bd54cc schema:affiliation https://www.grid.ac/institutes/grid.63622.33
85 schema:familyName Parida
86 schema:givenName Satya
87 rdf:type schema:Person
88 N363f0192f3c1406083bdad48632e23ba schema:name nlm_unique_id
89 schema:value 101563288
90 rdf:type schema:PropertyValue
91 N43bfbe522195435c9008caf4703e8a8a schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N493e3cc044e24b5fbb9f5010f2b2ff86 schema:name doi
94 schema:value 10.1038/s41598-019-41232-y
95 rdf:type schema:PropertyValue
96 N4f243269c08c420eacbb8d6dcc1febf8 schema:affiliation https://www.grid.ac/institutes/grid.4464.2
97 schema:familyName Kock
98 schema:givenName Richard
99 rdf:type schema:Person
100 N519861d2098342c089aefa957b9b1971 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
101 schema:familyName Libeau
102 schema:givenName Geneviève
103 rdf:type schema:Person
104 N5d66e8932bbe4226857ee40993db2322 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N60f4e2282ba2440884cad4875a70a642 rdf:first N121c02dcf8694c449efe4ba8d37c542a
107 rdf:rest Nbc4ceab0dd4447fe945b422b008925b0
108 N6180aa70f64c424b9ebf012b72c8c9fe schema:volumeNumber 9
109 rdf:type schema:PublicationVolume
110 N660d14a7915e4af7b57746bf5d543a54 schema:affiliation N18e497c284a5466e84409732ccef3c7e
111 schema:familyName Chubwa
112 schema:givenName Chobi Clement
113 rdf:type schema:Person
114 N704ec08aeb52457280fc14fc68829263 rdf:first N74652b4e9e9644629432bdd6087b4419
115 rdf:rest N0d953beab689480c83dc2acb10f923d5
116 N741e835f54bf4ab3a2e49e530f0e6efb schema:affiliation https://www.grid.ac/institutes/grid.121334.6
117 schema:familyName Kwiatek
118 schema:givenName Olivier
119 rdf:type schema:Person
120 N74652b4e9e9644629432bdd6087b4419 schema:affiliation https://www.grid.ac/institutes/grid.63622.33
121 schema:familyName Mahapatra
122 schema:givenName Mana
123 rdf:type schema:Person
124 N9509611d5b9f464aa96004c7b2b5a959 schema:name dimensions_id
125 schema:value pub.1112880772
126 rdf:type schema:PropertyValue
127 N96320df755cc4c2dbc7d8a9f1578dd53 rdf:first N519861d2098342c089aefa957b9b1971
128 rdf:rest rdf:nil
129 Nb1dc98e01cea43c7b26b4e07b7991fe6 rdf:first N4f243269c08c420eacbb8d6dcc1febf8
130 rdf:rest N193a95fd24354979acba3143b17287f5
131 Nb6b4179269704f38b36d42edb91042d0 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
132 schema:familyName Belfkhi
133 schema:givenName Salima
134 rdf:type schema:Person
135 Nb828e505c4e24c14bd189e470afa93fc rdf:first Ncb7fcb1e4a1b4ddeb34b37e85c8788ce
136 rdf:rest Nb1dc98e01cea43c7b26b4e07b7991fe6
137 Nbc4ceab0dd4447fe945b422b008925b0 rdf:first N741e835f54bf4ab3a2e49e530f0e6efb
138 rdf:rest Nd51f951ec2f642098578962bc799ac5a
139 Ncb7fcb1e4a1b4ddeb34b37e85c8788ce schema:affiliation https://www.grid.ac/institutes/grid.452871.d
140 schema:familyName Keyyu
141 schema:givenName Julius
142 rdf:type schema:Person
143 Nd51f951ec2f642098578962bc799ac5a rdf:first Nb6b4179269704f38b36d42edb91042d0
144 rdf:rest N170e4426d76c49e984852b9a67bc093f
145 Nd85a479d46bd425d875a7ab22d799f13 rdf:first N660d14a7915e4af7b57746bf5d543a54
146 rdf:rest Nb828e505c4e24c14bd189e470afa93fc
147 Ndeaa01a9cf7941bc805827082b7d0862 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
148 schema:familyName Mounier
149 schema:givenName Lucile
150 rdf:type schema:Person
151 Nf55a33b19c6b4fe6bc245e1a34073d34 schema:name pubmed_id
152 schema:value 30894600
153 rdf:type schema:PropertyValue
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical Microbiology
159 rdf:type schema:DefinedTerm
160 sg:grant.3495373 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41232-y
161 rdf:type schema:MonetaryGrant
162 sg:grant.3560319 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41232-y
163 rdf:type schema:MonetaryGrant
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 rdf:type schema:Periodical
167 sg:pub.10.1007/s00705-017-3456-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090311710
168 https://doi.org/10.1007/s00705-017-3456-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11250-008-9128-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005497115
171 https://doi.org/10.1007/s11250-008-9128-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11250-010-9776-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042007671
174 https://doi.org/10.1007/s11250-010-9776-y
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s11250-018-1623-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104466387
177 https://doi.org/10.1007/s11250-018-1623-6
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/s41598-018-26851-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104336756
180 https://doi.org/10.1038/s41598-018-26851-1
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1743-422x-11-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041397897
183 https://doi.org/10.1186/1743-422x-11-89
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/bs.aivir.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014605803
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jviromet.2010.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046570386
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jviromet.2010.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004579954
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.vaccine.2019.01.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112089079
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.vetmic.2012.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040043453
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.vetmic.2014.08.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015263248
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.vetmic.2015.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714378
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0166-0934(01)00386-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016988243
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/ve/vex022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090808893
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1099/jgv.0.000944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092186418
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1865-1682.2011.01270.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011029080
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/tbed.12052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050927785
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/tbed.12229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050987675
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/tbed.12266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048878032
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/tbed.12600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009746195
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.aav4096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107560064
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1155/2016/1486824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052104372
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0149982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033150967
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032194015
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2527/af.2014-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883612
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3201/eid2112.150223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027348860
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3201/eid2304.161218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084429481
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3201/eid2408.170334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105030682
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3390/v6062287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010355591
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
234 schema:name ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
235 CIRAD, UMR ASTRE, F-34398, Montpellier, France
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4464.2 schema:alternateName University of London
238 schema:name Royal Veterinary College, University of London, Hatfield, UK
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.452871.d schema:alternateName Tanzania Wildlife Research Institute
241 schema:name Tanzania Wildlife Research Institute, Arusha, Tanzania
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.63622.33 schema:alternateName Pirbright Institute
244 schema:name The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.8295.6 schema:alternateName Eduardo Mondlane University
247 schema:name ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
248 CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique
249 Faculdade de Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...