Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-18

AUTHORS

Yunni Wang, Gongxiang Cao, Yanhui Wang, Ashley A. Webb, Pengtao Yu, Xiaojiang Wang

ABSTRACT

Tree transpiration (T) is a major water budget component and varies widely due to the integrated effects of many environmental and vegetation factors. This study aimed to separate, quantify, and then integrate the effects of the main individual factors, to improve water use estimation and manage the hydrological impacts of forests. A field study was conducted at 3 plots of larch (Larix principis-rupprechtii) plantation in the semi-humid area of the Liupan Mountains, northwest China. The main influencing factors were the atmospheric evaporative demand expressed by potential evapotranspiration (PET), the soil water availability expressed by volumetric soil moisture (VSM) within the 0-100 cm layer, and the canopy transpiration capacity expressed by forest canopy leaf area index (LAI). The daily stand T was estimated through the up-scaling of sap-flow data from sampled trees. It displayed a high degree of scattering in response to PET, VSM and LAI, with an average of 0.76 mm·day-1 and range of 0.01-1.71 mm·day-1 in the growing season of 2014. Using upper boundary lines of measured data, the response tendency of T to each factor and corresponding function type were determined. The T increases firstly rapidly with rising PET, VSM and LAI, then gradually and tends to be stable when the threshold of PET (3.80 mm·day-1), VSM (0.28 m3·m-3) and LAI (3.7) is reached. The T response follows a quadratic equation for PET and saturated exponential function for VSM and LAI. These individual factor functions were coupled to form a general daily T model which was then fitted using measured data as: T = (0.793PET - 0.078PET2)·(1 - exp(-0.272LAI))·(1 - exp(-9.965VSM)). It can well explain the daily T variation of all 3 plots (R2 = 0.86-0.91), and thus can be used to predict the response of daily T of larch stands to changes in both environmental and canopy conditions. More... »

PAGES

4697

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1

DOI

http://dx.doi.org/10.1038/s41598-019-41186-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112858270

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30886244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China", 
          "id": "http://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010 China", 
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yunni", 
        "id": "sg:person.01140146363.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140146363.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China", 
          "id": "http://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010 China", 
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Gongxiang", 
        "id": "sg:person.01360746206.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360746206.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China", 
          "id": "http://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yanhui", 
        "id": "sg:person.01310212364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310212364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present Address: WaterNSW, PO Box 1251, Tamworth, NSW 2340 Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "NSW Department of Primary Industries, Tamworth Agricultural Institute, Calala, NSW 2340 Australia", 
            "Present Address: WaterNSW, PO Box 1251, Tamworth, NSW 2340 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webb", 
        "givenName": "Ashley A.", 
        "id": "sg:person.014527676563.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527676563.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China", 
          "id": "http://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Pengtao", 
        "id": "sg:person.0707471363.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707471363.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010 China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaojiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00866415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014937992", 
          "https://doi.org/10.1007/bf00866415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10457-012-9587-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006660209", 
          "https://doi.org/10.1007/s10457-012-9587-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13595-012-0233-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049526957", 
          "https://doi.org/10.1007/s13595-012-0233-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026116475", 
          "https://doi.org/10.1038/srep07039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004420000622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036951770", 
          "https://doi.org/10.1007/s004420000622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest:19960233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969144", 
          "https://doi.org/10.1051/forest:19960233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039278808", 
          "https://doi.org/10.1038/nclimate2198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/210172a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034301431", 
          "https://doi.org/10.1038/210172a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-21362-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100925258", 
          "https://doi.org/10.1038/s41598-018-21362-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009854220769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037852627", 
          "https://doi.org/10.1023/a:1009854220769"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "Tree transpiration (T) is a major water budget component and varies widely due to the integrated effects of many environmental and vegetation factors. This study aimed to separate, quantify, and then integrate the effects of the main individual factors, to improve water use estimation and manage the hydrological impacts of forests. A field study was conducted at 3 plots of larch (Larix principis-rupprechtii) plantation in the semi-humid area of the Liupan Mountains, northwest China. The main influencing factors were the atmospheric evaporative demand expressed by potential evapotranspiration (PET), the soil water availability expressed by volumetric soil moisture (VSM) within the 0-100\u2009cm layer, and the canopy transpiration capacity expressed by forest canopy leaf area index (LAI). The daily stand T was estimated through the up-scaling of sap-flow data from sampled trees. It displayed a high degree of scattering in response to PET, VSM and LAI, with an average of 0.76\u2009mm\u00b7day-1 and range of 0.01-1.71\u2009mm\u00b7day-1 in the growing season of 2014. Using upper boundary lines of measured data, the response tendency of T to each factor and corresponding function type were determined. The T increases firstly rapidly with rising PET, VSM and LAI, then gradually and tends to be stable when the threshold of PET (3.80\u2009mm\u00b7day-1), VSM (0.28 m3\u00b7m-3) and LAI (3.7) is reached. The T response follows a quadratic equation for PET and saturated exponential function for VSM and LAI. These individual factor functions were coupled to form a general daily T model which was then fitted using measured data as: T\u2009=\u2009(0.793PET\u2009-\u20090.078PET2)\u00b7(1\u2009-\u2009exp(-0.272LAI))\u00b7(1\u2009-\u2009exp(-9.965VSM)). It can well explain the daily T variation of all 3 plots (R2\u2009=\u20090.86-0.91), and thus can be used to predict the response of daily T of larch stands to changes in both environmental and canopy conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-019-41186-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8226694", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8236108", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "volumetric soil moisture", 
      "leaf area index", 
      "potential evapotranspiration", 
      "larch plantations", 
      "soil moisture", 
      "forest canopy leaf area index", 
      "area index", 
      "soil water availability", 
      "canopy leaf area index", 
      "upper boundary line", 
      "atmospheric evaporative demand", 
      "sap flow data", 
      "semi-humid areas", 
      "water budget components", 
      "vegetation factors", 
      "tree transpiration", 
      "water availability", 
      "hydrological impacts", 
      "canopy conditions", 
      "sampled trees", 
      "transpiration capacity", 
      "daily transpiration", 
      "evaporative demand", 
      "Liupan Mountains", 
      "Northwest China", 
      "field study", 
      "potential evaporation", 
      "plantations", 
      "budget components", 
      "major water budget components", 
      "transpiration", 
      "moisture", 
      "plots", 
      "main individual factors", 
      "forest", 
      "evapotranspiration", 
      "larch", 
      "Mountains", 
      "season", 
      "trees", 
      "variation", 
      "availability", 
      "water", 
      "index", 
      "China", 
      "high degree", 
      "boundary line", 
      "area", 
      "impact", 
      "factors", 
      "response", 
      "quadratic equation", 
      "exponential function", 
      "data", 
      "changes", 
      "effect", 
      "evaporation", 
      "range", 
      "capacity", 
      "varies", 
      "study", 
      "demand", 
      "types", 
      "average", 
      "conditions", 
      "function type", 
      "scaling", 
      "increase", 
      "individual factors", 
      "degree", 
      "threshold", 
      "layer", 
      "estimation", 
      "components", 
      "tendency", 
      "model", 
      "lines", 
      "function", 
      "response tendencies", 
      "equations", 
      "factor function", 
      "canopy transpiration capacity", 
      "daily stand T", 
      "stand T", 
      "threshold of PET", 
      "individual factor functions"
    ], 
    "name": "Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture", 
    "pagination": "4697", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112858270"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41186-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30886244"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41186-1", 
      "https://app.dimensions.ai/details/publication/pub.1112858270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_822.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-019-41186-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      22 PREDICATES      122 URIs      104 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41186-1 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author Nbcfa88f86fdb4a34a2f954e8090854a7
4 schema:citation sg:pub.10.1007/bf00866415
5 sg:pub.10.1007/s004420000622
6 sg:pub.10.1007/s10457-012-9587-4
7 sg:pub.10.1007/s13595-012-0233-0
8 sg:pub.10.1023/a:1009854220769
9 sg:pub.10.1038/210172a0
10 sg:pub.10.1038/nclimate2198
11 sg:pub.10.1038/s41598-018-21362-5
12 sg:pub.10.1038/srep07039
13 sg:pub.10.1051/forest:19960233
14 schema:datePublished 2019-03-18
15 schema:datePublishedReg 2019-03-18
16 schema:description Tree transpiration (T) is a major water budget component and varies widely due to the integrated effects of many environmental and vegetation factors. This study aimed to separate, quantify, and then integrate the effects of the main individual factors, to improve water use estimation and manage the hydrological impacts of forests. A field study was conducted at 3 plots of larch (Larix principis-rupprechtii) plantation in the semi-humid area of the Liupan Mountains, northwest China. The main influencing factors were the atmospheric evaporative demand expressed by potential evapotranspiration (PET), the soil water availability expressed by volumetric soil moisture (VSM) within the 0-100 cm layer, and the canopy transpiration capacity expressed by forest canopy leaf area index (LAI). The daily stand T was estimated through the up-scaling of sap-flow data from sampled trees. It displayed a high degree of scattering in response to PET, VSM and LAI, with an average of 0.76 mm·day<sup>-1</sup> and range of 0.01-1.71 mm·day<sup>-1</sup> in the growing season of 2014. Using upper boundary lines of measured data, the response tendency of T to each factor and corresponding function type were determined. The T increases firstly rapidly with rising PET, VSM and LAI, then gradually and tends to be stable when the threshold of PET (3.80 mm·day<sup>-1</sup>), VSM (0.28 m<sup>3</sup>·m<sup>-3</sup>) and LAI (3.7) is reached. The T response follows a quadratic equation for PET and saturated exponential function for VSM and LAI. These individual factor functions were coupled to form a general daily T model which was then fitted using measured data as: T = (0.793PET - 0.078PET<sup>2</sup>)·(1 - exp(-0.272LAI))·(1 - exp(-9.965VSM)). It can well explain the daily T variation of all 3 plots (R<sup>2</sup> = 0.86-0.91), and thus can be used to predict the response of daily T of larch stands to changes in both environmental and canopy conditions.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N19bdb232aa5b40ec9c169cf6072fc731
21 N49756d474eb04f9b8e7f5ff64a68331a
22 sg:journal.1045337
23 schema:keywords China
24 Liupan Mountains
25 Mountains
26 Northwest China
27 area
28 area index
29 atmospheric evaporative demand
30 availability
31 average
32 boundary line
33 budget components
34 canopy conditions
35 canopy leaf area index
36 canopy transpiration capacity
37 capacity
38 changes
39 components
40 conditions
41 daily stand T
42 daily transpiration
43 data
44 degree
45 demand
46 effect
47 equations
48 estimation
49 evaporation
50 evaporative demand
51 evapotranspiration
52 exponential function
53 factor function
54 factors
55 field study
56 forest
57 forest canopy leaf area index
58 function
59 function type
60 high degree
61 hydrological impacts
62 impact
63 increase
64 index
65 individual factor functions
66 individual factors
67 larch
68 larch plantations
69 layer
70 leaf area index
71 lines
72 main individual factors
73 major water budget components
74 model
75 moisture
76 plantations
77 plots
78 potential evaporation
79 potential evapotranspiration
80 quadratic equation
81 range
82 response
83 response tendencies
84 sampled trees
85 sap flow data
86 scaling
87 season
88 semi-humid areas
89 soil moisture
90 soil water availability
91 stand T
92 study
93 tendency
94 threshold
95 threshold of PET
96 transpiration
97 transpiration capacity
98 tree transpiration
99 trees
100 types
101 upper boundary line
102 variation
103 varies
104 vegetation factors
105 volumetric soil moisture
106 water
107 water availability
108 water budget components
109 schema:name Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture
110 schema:pagination 4697
111 schema:productId N0926dddc2cd2491f919721d6fab245be
112 N8526bd469d2a4f1d9cb45ddfbda07d28
113 Nc8d67a255298484d95af4b59c5d59ceb
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112858270
115 https://doi.org/10.1038/s41598-019-41186-1
116 schema:sdDatePublished 2021-12-01T19:46
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N9fbda2513f054241bd27e4d6574de7a7
119 schema:url https://doi.org/10.1038/s41598-019-41186-1
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N0926dddc2cd2491f919721d6fab245be schema:name doi
124 schema:value 10.1038/s41598-019-41186-1
125 rdf:type schema:PropertyValue
126 N19bdb232aa5b40ec9c169cf6072fc731 schema:volumeNumber 9
127 rdf:type schema:PublicationVolume
128 N4339818d94ab4702ac659af311056f79 rdf:first sg:person.0707471363.66
129 rdf:rest Nbd8b45996eba443baeb0680d82028967
130 N49756d474eb04f9b8e7f5ff64a68331a schema:issueNumber 1
131 rdf:type schema:PublicationIssue
132 N7479f1d3154049cf80a4c1305ac81835 rdf:first sg:person.01310212364.52
133 rdf:rest Nf4abdb886d6c4f4facbd94828f2d79b2
134 N8117b69eee6b4935b95555f0dbc0e907 schema:affiliation grid-institutes:None
135 schema:familyName Wang
136 schema:givenName Xiaojiang
137 rdf:type schema:Person
138 N8526bd469d2a4f1d9cb45ddfbda07d28 schema:name dimensions_id
139 schema:value pub.1112858270
140 rdf:type schema:PropertyValue
141 N9fbda2513f054241bd27e4d6574de7a7 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 Nbcfa88f86fdb4a34a2f954e8090854a7 rdf:first sg:person.01140146363.75
144 rdf:rest Ncdd1d0e4b3de4c53bc99bac368b07fce
145 Nbd8b45996eba443baeb0680d82028967 rdf:first N8117b69eee6b4935b95555f0dbc0e907
146 rdf:rest rdf:nil
147 Nc8d67a255298484d95af4b59c5d59ceb schema:name pubmed_id
148 schema:value 30886244
149 rdf:type schema:PropertyValue
150 Ncdd1d0e4b3de4c53bc99bac368b07fce rdf:first sg:person.01360746206.54
151 rdf:rest N7479f1d3154049cf80a4c1305ac81835
152 Nf4abdb886d6c4f4facbd94828f2d79b2 rdf:first sg:person.014527676563.02
153 rdf:rest N4339818d94ab4702ac659af311056f79
154 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
155 schema:name Agricultural and Veterinary Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
158 schema:name Forestry Sciences
159 rdf:type schema:DefinedTerm
160 sg:grant.8226694 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41186-1
161 rdf:type schema:MonetaryGrant
162 sg:grant.8236108 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41186-1
163 rdf:type schema:MonetaryGrant
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01140146363.75 schema:affiliation grid-institutes:grid.216566.0
169 schema:familyName Wang
170 schema:givenName Yunni
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140146363.75
172 rdf:type schema:Person
173 sg:person.01310212364.52 schema:affiliation grid-institutes:grid.216566.0
174 schema:familyName Wang
175 schema:givenName Yanhui
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310212364.52
177 rdf:type schema:Person
178 sg:person.01360746206.54 schema:affiliation grid-institutes:grid.216566.0
179 schema:familyName Cao
180 schema:givenName Gongxiang
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360746206.54
182 rdf:type schema:Person
183 sg:person.014527676563.02 schema:affiliation grid-institutes:None
184 schema:familyName Webb
185 schema:givenName Ashley A.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527676563.02
187 rdf:type schema:Person
188 sg:person.0707471363.66 schema:affiliation grid-institutes:grid.216566.0
189 schema:familyName Yu
190 schema:givenName Pengtao
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707471363.66
192 rdf:type schema:Person
193 sg:pub.10.1007/bf00866415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014937992
194 https://doi.org/10.1007/bf00866415
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s004420000622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036951770
197 https://doi.org/10.1007/s004420000622
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s10457-012-9587-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006660209
200 https://doi.org/10.1007/s10457-012-9587-4
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s13595-012-0233-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049526957
203 https://doi.org/10.1007/s13595-012-0233-0
204 rdf:type schema:CreativeWork
205 sg:pub.10.1023/a:1009854220769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852627
206 https://doi.org/10.1023/a:1009854220769
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/210172a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034301431
209 https://doi.org/10.1038/210172a0
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nclimate2198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039278808
212 https://doi.org/10.1038/nclimate2198
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/s41598-018-21362-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100925258
215 https://doi.org/10.1038/s41598-018-21362-5
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/srep07039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026116475
218 https://doi.org/10.1038/srep07039
219 rdf:type schema:CreativeWork
220 sg:pub.10.1051/forest:19960233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969144
221 https://doi.org/10.1051/forest:19960233
222 rdf:type schema:CreativeWork
223 grid-institutes:None schema:alternateName Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010 China
224 Present Address: WaterNSW, PO Box 1251, Tamworth, NSW 2340 Australia
225 schema:name Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010 China
226 NSW Department of Primary Industries, Tamworth Agricultural Institute, Calala, NSW 2340 Australia
227 Present Address: WaterNSW, PO Box 1251, Tamworth, NSW 2340 Australia
228 rdf:type schema:Organization
229 grid-institutes:grid.216566.0 schema:alternateName Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China
230 schema:name Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010 China
231 Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091 China
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...