Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yunni Wang, Gongxiang Cao, Yanhui Wang, Ashley A. Webb, Pengtao Yu, Xiaojiang Wang

ABSTRACT

Tree transpiration (T) is a major water budget component and varies widely due to the integrated effects of many environmental and vegetation factors. This study aimed to separate, quantify, and then integrate the effects of the main individual factors, to improve water use estimation and manage the hydrological impacts of forests. A field study was conducted at 3 plots of larch (Larix principis-rupprechtii) plantation in the semi-humid area of the Liupan Mountains, northwest China. The main influencing factors were the atmospheric evaporative demand expressed by potential evapotranspiration (PET), the soil water availability expressed by volumetric soil moisture (VSM) within the 0-100 cm layer, and the canopy transpiration capacity expressed by forest canopy leaf area index (LAI). The daily stand T was estimated through the up-scaling of sap-flow data from sampled trees. It displayed a high degree of scattering in response to PET, VSM and LAI, with an average of 0.76 mm·day-1 and range of 0.01-1.71 mm·day-1 in the growing season of 2014. Using upper boundary lines of measured data, the response tendency of T to each factor and corresponding function type were determined. The T increases firstly rapidly with rising PET, VSM and LAI, then gradually and tends to be stable when the threshold of PET (3.80 mm·day-1), VSM (0.28 m3·m-3) and LAI (3.7) is reached. The T response follows a quadratic equation for PET and saturated exponential function for VSM and LAI. These individual factor functions were coupled to form a general daily T model which was then fitted using measured data as: T = (0.793PET - 0.078PET2)·(1 - exp(-0.272LAI))·(1 - exp(-9.965VSM)). It can well explain the daily T variation of all 3 plots (R2 = 0.86-0.91), and thus can be used to predict the response of daily T of larch stands to changes in both environmental and canopy conditions. More... »

PAGES

4697

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1

DOI

http://dx.doi.org/10.1038/s41598-019-41186-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112858270

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30886244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Forestry", 
          "id": "https://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Inner Mongolia Academy of Forestry Sciences, 010010, Hohhot, China", 
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yunni", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Forestry", 
          "id": "https://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Inner Mongolia Academy of Forestry Sciences, 010010, Hohhot, China", 
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Gongxiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Forestry", 
          "id": "https://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yanhui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WaterNSW", 
          "id": "https://www.grid.ac/institutes/grid.474179.8", 
          "name": [
            "NSW Department of Primary Industries, Tamworth Agricultural Institute, 2340, Calala, NSW, Australia", 
            "WaterNSW, PO Box 1251, 2340, Tamworth, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webb", 
        "givenName": "Ashley A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Forestry", 
          "id": "https://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Pengtao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Inner Mongolia Academy of Forestry Sciences, 010010, Hohhot, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaojiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1002-0160(14)60076-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002798905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1078/1439-1791-00099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003367069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2011.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005052821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10457-012-9587-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006660209", 
          "https://doi.org/10.1007/s10457-012-9587-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2007.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009865458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/25.11.1469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010843906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014011029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00866415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014937992", 
          "https://doi.org/10.1007/bf00866415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2013.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015084306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2014.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017095569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4290(96)00014-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017121160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2011.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017521807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eco.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019982004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020733779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/3.4.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021117650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0134902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022318185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1752-1688.12314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022424148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1127(01)00578-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023563539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(00)00152-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026116475", 
          "https://doi.org/10.1038/srep07039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1923(90)90115-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027054484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1923(90)90115-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027054484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2013.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027455363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2007.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028290975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/19.10.681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030071227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/210172a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034301431", 
          "https://doi.org/10.1038/210172a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035120234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004420000622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036951770", 
          "https://doi.org/10.1007/s004420000622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2011.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037127042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpv022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037155079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009854220769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037852627", 
          "https://doi.org/10.1023/a:1009854220769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eco.1764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038685687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eco.1764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038685687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1051-0761(2001)011[0385:iaiavi]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038836615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039278808", 
          "https://doi.org/10.1038/nclimate2198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(02)00060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040274964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(00)00199-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047021638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2015.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13595-012-0233-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049526957", 
          "https://doi.org/10.1007/s13595-012-0233-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1976.0035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050441409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2014.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053593081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0031782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053732133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest:19960233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969144", 
          "https://doi.org/10.1051/forest:19960233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2006)11:6(597)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1962.00021962005400050005x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068986088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1258.2011.00411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071351479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-21362-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100925258", 
          "https://doi.org/10.1038/s41598-018-21362-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Tree transpiration (T) is a major water budget component and varies widely due to the integrated effects of many environmental and vegetation factors. This study aimed to separate, quantify, and then integrate the effects of the main individual factors, to improve water use estimation and manage the hydrological impacts of forests. A field study was conducted at 3 plots of larch (Larix principis-rupprechtii) plantation in the semi-humid area of the Liupan Mountains, northwest China. The main influencing factors were the atmospheric evaporative demand expressed by potential evapotranspiration (PET), the soil water availability expressed by volumetric soil moisture (VSM) within the 0-100\u2009cm layer, and the canopy transpiration capacity expressed by forest canopy leaf area index (LAI). The daily stand T was estimated through the up-scaling of sap-flow data from sampled trees. It displayed a high degree of scattering in response to PET, VSM and LAI, with an average of 0.76\u2009mm\u00b7day-1 and range of 0.01-1.71\u2009mm\u00b7day-1 in the growing season of 2014. Using upper boundary lines of measured data, the response tendency of T to each factor and corresponding function type were determined. The T increases firstly rapidly with rising PET, VSM and LAI, then gradually and tends to be stable when the threshold of PET (3.80\u2009mm\u00b7day-1), VSM (0.28 m3\u00b7m-3) and LAI (3.7) is reached. The T response follows a quadratic equation for PET and saturated exponential function for VSM and LAI. These individual factor functions were coupled to form a general daily T model which was then fitted using measured data as: T\u2009=\u2009(0.793PET\u2009-\u20090.078PET2)\u00b7(1\u2009-\u2009exp(-0.272LAI))\u00b7(1\u2009-\u2009exp(-9.965VSM)). It can well explain the daily T variation of all 3 plots (R2\u2009=\u20090.86-0.91), and thus can be used to predict the response of daily T of larch stands to changes in both environmental and canopy conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41186-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture", 
    "pagination": "4697", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea804c92cc1f2800516f70cc957cba1e6fdab1ad5d2e823704c9685f5e69ba8e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30886244"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41186-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112858270"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41186-1", 
      "https://app.dimensions.ai/details/publication/pub.1112858270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41186-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41186-1'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41186-1 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author Na5582e4c46ea45c79411dfcae7d6919a
4 schema:citation sg:pub.10.1007/bf00866415
5 sg:pub.10.1007/s004420000622
6 sg:pub.10.1007/s10457-012-9587-4
7 sg:pub.10.1007/s13595-012-0233-0
8 sg:pub.10.1023/a:1009854220769
9 sg:pub.10.1038/210172a0
10 sg:pub.10.1038/nclimate2198
11 sg:pub.10.1038/s41598-018-21362-5
12 sg:pub.10.1038/srep07039
13 sg:pub.10.1051/forest:19960233
14 https://doi.org/10.1002/eco.1764
15 https://doi.org/10.1002/eco.215
16 https://doi.org/10.1016/0168-1923(90)90115-m
17 https://doi.org/10.1016/0378-4290(96)00014-7
18 https://doi.org/10.1016/j.agrformet.2007.11.013
19 https://doi.org/10.1016/j.agrformet.2011.04.007
20 https://doi.org/10.1016/j.agrformet.2013.12.002
21 https://doi.org/10.1016/j.agrformet.2014.06.012
22 https://doi.org/10.1016/j.agrformet.2015.01.003
23 https://doi.org/10.1016/j.agrformet.2015.03.009
24 https://doi.org/10.1016/j.biombioe.2007.01.014
25 https://doi.org/10.1016/j.foreco.2011.08.018
26 https://doi.org/10.1016/j.foreco.2011.11.019
27 https://doi.org/10.1016/j.foreco.2013.03.003
28 https://doi.org/10.1016/j.foreco.2014.08.041
29 https://doi.org/10.1016/j.jhydrol.2005.12.013
30 https://doi.org/10.1016/j.jhydrol.2011.03.013
31 https://doi.org/10.1016/s0168-1923(00)00152-0
32 https://doi.org/10.1016/s0168-1923(00)00199-4
33 https://doi.org/10.1016/s0168-1923(02)00060-6
34 https://doi.org/10.1016/s0378-1127(01)00578-3
35 https://doi.org/10.1016/s1002-0160(14)60076-x
36 https://doi.org/10.1061/(asce)1084-0699(2006)11:6(597)
37 https://doi.org/10.1078/1439-1791-00099
38 https://doi.org/10.1093/treephys/19.10.681
39 https://doi.org/10.1093/treephys/25.11.1469
40 https://doi.org/10.1093/treephys/3.4.309
41 https://doi.org/10.1093/treephys/tpv022
42 https://doi.org/10.1098/rstb.1976.0035
43 https://doi.org/10.1111/1752-1688.12314
44 https://doi.org/10.1371/journal.pone.0031782
45 https://doi.org/10.1371/journal.pone.0134902
46 https://doi.org/10.1890/1051-0761(2001)011[0385:iaiavi]2.0.co;2
47 https://doi.org/10.2134/agronj1962.00021962005400050005x
48 https://doi.org/10.3724/sp.j.1258.2011.00411
49 schema:datePublished 2019-12
50 schema:datePublishedReg 2019-12-01
51 schema:description Tree transpiration (T) is a major water budget component and varies widely due to the integrated effects of many environmental and vegetation factors. This study aimed to separate, quantify, and then integrate the effects of the main individual factors, to improve water use estimation and manage the hydrological impacts of forests. A field study was conducted at 3 plots of larch (Larix principis-rupprechtii) plantation in the semi-humid area of the Liupan Mountains, northwest China. The main influencing factors were the atmospheric evaporative demand expressed by potential evapotranspiration (PET), the soil water availability expressed by volumetric soil moisture (VSM) within the 0-100 cm layer, and the canopy transpiration capacity expressed by forest canopy leaf area index (LAI). The daily stand T was estimated through the up-scaling of sap-flow data from sampled trees. It displayed a high degree of scattering in response to PET, VSM and LAI, with an average of 0.76 mm·day<sup>-1</sup> and range of 0.01-1.71 mm·day<sup>-1</sup> in the growing season of 2014. Using upper boundary lines of measured data, the response tendency of T to each factor and corresponding function type were determined. The T increases firstly rapidly with rising PET, VSM and LAI, then gradually and tends to be stable when the threshold of PET (3.80 mm·day<sup>-1</sup>), VSM (0.28 m<sup>3</sup>·m<sup>-3</sup>) and LAI (3.7) is reached. The T response follows a quadratic equation for PET and saturated exponential function for VSM and LAI. These individual factor functions were coupled to form a general daily T model which was then fitted using measured data as: T = (0.793PET - 0.078PET<sup>2</sup>)·(1 - exp(-0.272LAI))·(1 - exp(-9.965VSM)). It can well explain the daily T variation of all 3 plots (R<sup>2</sup> = 0.86-0.91), and thus can be used to predict the response of daily T of larch stands to changes in both environmental and canopy conditions.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N9ab8aa4e965446d6a9b61dd08a6a2da4
56 Ne8df0c1ed0c0402eaf71a5dcb000fb2f
57 sg:journal.1045337
58 schema:name Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture
59 schema:pagination 4697
60 schema:productId N27747be798064eb9907366397b8df219
61 N46adcbacbfe7418e859170079bc52f72
62 Naa212ca1e9c3436eb0e09283af1e11e8
63 Nce853337512e44aa84c2cb324d98f72a
64 Ne6e5e8da2c044b7eb223ab8543f7d45f
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112858270
66 https://doi.org/10.1038/s41598-019-41186-1
67 schema:sdDatePublished 2019-04-11T13:21
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Naa1796d7ca0d4238999a3fc683c2cdb0
70 schema:url https://www.nature.com/articles/s41598-019-41186-1
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N15ae87999870421bb9af6ce66e6bb11c rdf:first N7c22769cceb24988859b417312485c7c
75 rdf:rest rdf:nil
76 N206e66148a3d40faa7024bc57aca8426 schema:affiliation https://www.grid.ac/institutes/grid.216566.0
77 schema:familyName Cao
78 schema:givenName Gongxiang
79 rdf:type schema:Person
80 N27747be798064eb9907366397b8df219 schema:name dimensions_id
81 schema:value pub.1112858270
82 rdf:type schema:PropertyValue
83 N3cb1449b5f7e425b9fd73afca40a1e45 rdf:first N7fa0862d96a243a5914febb56f31a7b3
84 rdf:rest N15ae87999870421bb9af6ce66e6bb11c
85 N4579ab328c424ec3acf909466b790e6e rdf:first Na6a7e906f7ca4053987aa93db6b4c410
86 rdf:rest N71441aad169e4f228657ee9710840c21
87 N46adcbacbfe7418e859170079bc52f72 schema:name readcube_id
88 schema:value ea804c92cc1f2800516f70cc957cba1e6fdab1ad5d2e823704c9685f5e69ba8e
89 rdf:type schema:PropertyValue
90 N672ead54fd5f41dd96b3432ae7aa5d94 schema:affiliation https://www.grid.ac/institutes/grid.474179.8
91 schema:familyName Webb
92 schema:givenName Ashley A.
93 rdf:type schema:Person
94 N71441aad169e4f228657ee9710840c21 rdf:first N672ead54fd5f41dd96b3432ae7aa5d94
95 rdf:rest N3cb1449b5f7e425b9fd73afca40a1e45
96 N7c22769cceb24988859b417312485c7c schema:affiliation N9cf68832b52a49c38cad8bd4441201c5
97 schema:familyName Wang
98 schema:givenName Xiaojiang
99 rdf:type schema:Person
100 N7fa0862d96a243a5914febb56f31a7b3 schema:affiliation https://www.grid.ac/institutes/grid.216566.0
101 schema:familyName Yu
102 schema:givenName Pengtao
103 rdf:type schema:Person
104 N9ab8aa4e965446d6a9b61dd08a6a2da4 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N9cf68832b52a49c38cad8bd4441201c5 schema:name Inner Mongolia Academy of Forestry Sciences, 010010, Hohhot, China
107 rdf:type schema:Organization
108 Na5582e4c46ea45c79411dfcae7d6919a rdf:first Nbd048f6911194a77a0336472cd3259df
109 rdf:rest Nc66d107968244f8dbb9faf570b01819b
110 Na6a7e906f7ca4053987aa93db6b4c410 schema:affiliation https://www.grid.ac/institutes/grid.216566.0
111 schema:familyName Wang
112 schema:givenName Yanhui
113 rdf:type schema:Person
114 Naa1796d7ca0d4238999a3fc683c2cdb0 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Naa212ca1e9c3436eb0e09283af1e11e8 schema:name doi
117 schema:value 10.1038/s41598-019-41186-1
118 rdf:type schema:PropertyValue
119 Nbd048f6911194a77a0336472cd3259df schema:affiliation https://www.grid.ac/institutes/grid.216566.0
120 schema:familyName Wang
121 schema:givenName Yunni
122 rdf:type schema:Person
123 Nc66d107968244f8dbb9faf570b01819b rdf:first N206e66148a3d40faa7024bc57aca8426
124 rdf:rest N4579ab328c424ec3acf909466b790e6e
125 Nce853337512e44aa84c2cb324d98f72a schema:name nlm_unique_id
126 schema:value 101563288
127 rdf:type schema:PropertyValue
128 Ne6e5e8da2c044b7eb223ab8543f7d45f schema:name pubmed_id
129 schema:value 30886244
130 rdf:type schema:PropertyValue
131 Ne8df0c1ed0c0402eaf71a5dcb000fb2f schema:volumeNumber 9
132 rdf:type schema:PublicationVolume
133 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
134 schema:name Agricultural and Veterinary Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
137 schema:name Forestry Sciences
138 rdf:type schema:DefinedTerm
139 sg:journal.1045337 schema:issn 2045-2322
140 schema:name Scientific Reports
141 rdf:type schema:Periodical
142 sg:pub.10.1007/bf00866415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014937992
143 https://doi.org/10.1007/bf00866415
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s004420000622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036951770
146 https://doi.org/10.1007/s004420000622
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10457-012-9587-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006660209
149 https://doi.org/10.1007/s10457-012-9587-4
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s13595-012-0233-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049526957
152 https://doi.org/10.1007/s13595-012-0233-0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1023/a:1009854220769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852627
155 https://doi.org/10.1023/a:1009854220769
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/210172a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034301431
158 https://doi.org/10.1038/210172a0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nclimate2198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039278808
161 https://doi.org/10.1038/nclimate2198
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/s41598-018-21362-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100925258
164 https://doi.org/10.1038/s41598-018-21362-5
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/srep07039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026116475
167 https://doi.org/10.1038/srep07039
168 rdf:type schema:CreativeWork
169 sg:pub.10.1051/forest:19960233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969144
170 https://doi.org/10.1051/forest:19960233
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/eco.1764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038685687
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/eco.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019982004
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0168-1923(90)90115-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1027054484
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0378-4290(96)00014-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017121160
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.agrformet.2007.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028290975
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.agrformet.2011.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037127042
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.agrformet.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027455363
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.agrformet.2014.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053593081
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.agrformet.2015.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049252038
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.agrformet.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035120234
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.biombioe.2007.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009865458
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.foreco.2011.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017521807
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.foreco.2011.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005052821
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.foreco.2013.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015084306
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.foreco.2014.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017095569
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jhydrol.2005.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014011029
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jhydrol.2011.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020733779
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0168-1923(00)00152-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768519
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0168-1923(00)00199-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047021638
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0168-1923(02)00060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040274964
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0378-1127(01)00578-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023563539
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s1002-0160(14)60076-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002798905
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1061/(asce)1084-0699(2006)11:6(597) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616384
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1078/1439-1791-00099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003367069
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/treephys/19.10.681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030071227
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/treephys/25.11.1469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010843906
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/treephys/3.4.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021117650
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/treephys/tpv022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037155079
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1098/rstb.1976.0035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050441409
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1111/1752-1688.12314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022424148
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1371/journal.pone.0031782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053732133
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1371/journal.pone.0134902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022318185
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1890/1051-0761(2001)011[0385:iaiavi]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038836615
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2134/agronj1962.00021962005400050005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068986088
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3724/sp.j.1258.2011.00411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071351479
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.216566.0 schema:alternateName Chinese Academy of Forestry
243 schema:name Inner Mongolia Academy of Forestry Sciences, 010010, Hohhot, China
244 Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, 100091, Beijing, China
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.474179.8 schema:alternateName WaterNSW
247 schema:name NSW Department of Primary Industries, Tamworth Agricultural Institute, 2340, Calala, NSW, Australia
248 WaterNSW, PO Box 1251, 2340, Tamworth, NSW, Australia
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...