Broadband and high-power terahertz radiation source based on extended interaction klystron View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Renjie Li, Cunjun Ruan, Ayesha Kosar Fahad, Chenyu Zhang, Shasha Li

ABSTRACT

Terahertz applications require high performance and high reliability terahertz radiation sources, especially the urgent demands of high output power and broad bandwidth. The extended interaction klystron (EIK) has the great potential to generate hundreds of watt output power in terahertz band. The terahertz EIK adopts multiple gap cavities and unequal-width slots structure is proposed with methodological improvement of bandwidth and output power. The unequal-width slots are the key design of the multiple gap cavity, and the influences of unequal-width slots on the electromagnetic field distribution and beam-wave interaction are analyzed in detail. With multiple gap cavities and unequal-width slots structure, EIK has advantages of wider frequency separation and larger effective characteristic impedance. Particle in cell (PIC) simulation indicates that the bandwidth of unequal-width slots structure can reach to 550 MHz in our initial G-band EIK design. Then, we utilize two kinds of resonance cavities with different width ratios to build a six-cavity beam-wave interaction system and make it operate at the state of stagger-tuning, the bandwidth can be extended to 1-1.5 GHz. Our research shows that the unequal-width slots structure has wider tuning frequency range. Furthermore, the bandwidth can be further broadened to over 2 GHz when dynamic-tuning is adopted, while maintains a high output power of 560 W with efficiency of 11.3% and gain of 47.5 dB. Thus, the methods of multiple gap cavities with unequal-width slots structure, stagger-tuning and dynamic-tuning are much important for the bandwidth improvement of EIK in terahertz band. More... »

PAGES

4584

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41087-3

DOI

http://dx.doi.org/10.1038/s41598-019-41087-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112768019

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30872702


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "School of Electronic and Information Engineering, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Renjie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "School of Electronic and Information Engineering, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruan", 
        "givenName": "Cunjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "School of Electronic and Information Engineering, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahad", 
        "givenName": "Ayesha Kosar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "School of Electronic and Information Engineering, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chenyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "School of Electronic and Information Engineering, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shasha", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep08772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020840956", 
          "https://doi.org/10.1038/srep08772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/47/37/374001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041314821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2838240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057877992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.989974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061127633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-ed.1961.14708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061457000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2005.845799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061591583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2013.2295771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061595918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2014.2298753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061595958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tthz.2011.2151610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061807303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-07545-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090989401", 
          "https://doi.org/10.1038/s41598-017-07545-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivelec.2007.4283261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093397074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icimw.2010.5613040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093649544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/plasma.2010.5533941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094763767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivelec.2009.5193420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094914602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivelec.2008.4556351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094927272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icbnmt.2009.5347808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095379065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5012018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101459242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10762-018-0546-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107802428", 
          "https://doi.org/10.1007/s10762-018-0546-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Terahertz applications require high performance and high reliability terahertz radiation sources, especially the urgent demands of high output power and broad bandwidth. The extended interaction klystron (EIK) has the great potential to generate hundreds of watt output power in terahertz band. The terahertz EIK adopts multiple gap cavities and unequal-width slots structure is proposed with methodological improvement of bandwidth and output power. The unequal-width slots are the key design of the multiple gap cavity, and the influences of unequal-width slots on the electromagnetic field distribution and beam-wave interaction are analyzed in detail. With multiple gap cavities and unequal-width slots structure, EIK has advantages of wider frequency separation and larger effective characteristic impedance. Particle in cell (PIC) simulation indicates that the bandwidth of unequal-width slots structure can reach to 550\u2009MHz in our initial G-band EIK design. Then, we utilize two kinds of resonance cavities with different width ratios to build a six-cavity beam-wave interaction system and make it operate at the state of stagger-tuning, the bandwidth can be extended to 1-1.5\u2009GHz. Our research shows that the unequal-width slots structure has wider tuning frequency range. Furthermore, the bandwidth can be further broadened to over 2\u2009GHz when dynamic-tuning is adopted, while maintains a high output power of 560\u2009W with efficiency of 11.3% and gain of 47.5\u2009dB. Thus, the methods of multiple gap cavities with unequal-width slots structure, stagger-tuning and dynamic-tuning are much important for the bandwidth improvement of EIK in terahertz band.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41087-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Broadband and high-power terahertz radiation source based on extended interaction klystron", 
    "pagination": "4584", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e44954248b9ba49cf11130574e0c57b5edf0328ca9d2fb60e386d70f6f952bf4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30872702"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41087-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112768019"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41087-3", 
      "https://app.dimensions.ai/details/publication/pub.1112768019"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41087-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41087-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41087-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41087-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41087-3'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41087-3 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N33dd764fd6f3460ea05aa8fcc3e71a92
4 schema:citation sg:pub.10.1007/s10762-018-0546-7
5 sg:pub.10.1038/s41598-017-07545-6
6 sg:pub.10.1038/srep08772
7 https://doi.org/10.1063/1.2838240
8 https://doi.org/10.1063/1.5012018
9 https://doi.org/10.1088/0022-3727/47/37/374001
10 https://doi.org/10.1109/22.989974
11 https://doi.org/10.1109/icbnmt.2009.5347808
12 https://doi.org/10.1109/icimw.2010.5613040
13 https://doi.org/10.1109/ivelec.2007.4283261
14 https://doi.org/10.1109/ivelec.2008.4556351
15 https://doi.org/10.1109/ivelec.2009.5193420
16 https://doi.org/10.1109/plasma.2010.5533941
17 https://doi.org/10.1109/t-ed.1961.14708
18 https://doi.org/10.1109/ted.2005.845799
19 https://doi.org/10.1109/ted.2013.2295771
20 https://doi.org/10.1109/ted.2014.2298753
21 https://doi.org/10.1109/tthz.2011.2151610
22 schema:datePublished 2019-12
23 schema:datePublishedReg 2019-12-01
24 schema:description Terahertz applications require high performance and high reliability terahertz radiation sources, especially the urgent demands of high output power and broad bandwidth. The extended interaction klystron (EIK) has the great potential to generate hundreds of watt output power in terahertz band. The terahertz EIK adopts multiple gap cavities and unequal-width slots structure is proposed with methodological improvement of bandwidth and output power. The unequal-width slots are the key design of the multiple gap cavity, and the influences of unequal-width slots on the electromagnetic field distribution and beam-wave interaction are analyzed in detail. With multiple gap cavities and unequal-width slots structure, EIK has advantages of wider frequency separation and larger effective characteristic impedance. Particle in cell (PIC) simulation indicates that the bandwidth of unequal-width slots structure can reach to 550 MHz in our initial G-band EIK design. Then, we utilize two kinds of resonance cavities with different width ratios to build a six-cavity beam-wave interaction system and make it operate at the state of stagger-tuning, the bandwidth can be extended to 1-1.5 GHz. Our research shows that the unequal-width slots structure has wider tuning frequency range. Furthermore, the bandwidth can be further broadened to over 2 GHz when dynamic-tuning is adopted, while maintains a high output power of 560 W with efficiency of 11.3% and gain of 47.5 dB. Thus, the methods of multiple gap cavities with unequal-width slots structure, stagger-tuning and dynamic-tuning are much important for the bandwidth improvement of EIK in terahertz band.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N02f118685b86477588a1d4598444ee2c
29 Ndc04fec64a264e87978e05271cc0ba4b
30 sg:journal.1045337
31 schema:name Broadband and high-power terahertz radiation source based on extended interaction klystron
32 schema:pagination 4584
33 schema:productId N7f8f613994124be782d22d76832775eb
34 N89f25a487b444bc7a4b455aa3c83eb9c
35 N9ba2a2fbc69b46269ff26234546a3ba8
36 Nc22e4ed56f3640b28a4b45cee0b21342
37 Ncf6524214de54ee1b8d36d5f9b0f1c6e
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112768019
39 https://doi.org/10.1038/s41598-019-41087-3
40 schema:sdDatePublished 2019-04-11T13:21
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nb0a43479f68f4556bea6e8ade8c723d5
43 schema:url https://www.nature.com/articles/s41598-019-41087-3
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N02f118685b86477588a1d4598444ee2c schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N05bc46d8ef7243d6b59ef649f5a3f424 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
50 schema:familyName Fahad
51 schema:givenName Ayesha Kosar
52 rdf:type schema:Person
53 N1e09f767804b4e14bb8a09d821be8e76 rdf:first N05bc46d8ef7243d6b59ef649f5a3f424
54 rdf:rest Ncb873fec1e5b419b8476e7a9da35e5c3
55 N2b8840cd18474fb7a10ace09cf6f5c51 rdf:first Nc9cc90a4ee8e4c4eb4b1f412b1cd7b0d
56 rdf:rest N1e09f767804b4e14bb8a09d821be8e76
57 N33dd764fd6f3460ea05aa8fcc3e71a92 rdf:first N82e3ba65db50486680aa8abe382d4ccb
58 rdf:rest N2b8840cd18474fb7a10ace09cf6f5c51
59 N4a72b1d1831d4382b97ed0b6f5d19aee rdf:first N774ba55eb72b4fd3aa37cdabc0486719
60 rdf:rest rdf:nil
61 N5ce5448a890249f78694350f13277195 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
62 schema:familyName Zhang
63 schema:givenName Chenyu
64 rdf:type schema:Person
65 N774ba55eb72b4fd3aa37cdabc0486719 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
66 schema:familyName Li
67 schema:givenName Shasha
68 rdf:type schema:Person
69 N7f8f613994124be782d22d76832775eb schema:name doi
70 schema:value 10.1038/s41598-019-41087-3
71 rdf:type schema:PropertyValue
72 N82e3ba65db50486680aa8abe382d4ccb schema:affiliation https://www.grid.ac/institutes/grid.64939.31
73 schema:familyName Li
74 schema:givenName Renjie
75 rdf:type schema:Person
76 N89f25a487b444bc7a4b455aa3c83eb9c schema:name nlm_unique_id
77 schema:value 101563288
78 rdf:type schema:PropertyValue
79 N9ba2a2fbc69b46269ff26234546a3ba8 schema:name readcube_id
80 schema:value e44954248b9ba49cf11130574e0c57b5edf0328ca9d2fb60e386d70f6f952bf4
81 rdf:type schema:PropertyValue
82 Nb0a43479f68f4556bea6e8ade8c723d5 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nc22e4ed56f3640b28a4b45cee0b21342 schema:name dimensions_id
85 schema:value pub.1112768019
86 rdf:type schema:PropertyValue
87 Nc9cc90a4ee8e4c4eb4b1f412b1cd7b0d schema:affiliation https://www.grid.ac/institutes/grid.64939.31
88 schema:familyName Ruan
89 schema:givenName Cunjun
90 rdf:type schema:Person
91 Ncb873fec1e5b419b8476e7a9da35e5c3 rdf:first N5ce5448a890249f78694350f13277195
92 rdf:rest N4a72b1d1831d4382b97ed0b6f5d19aee
93 Ncf6524214de54ee1b8d36d5f9b0f1c6e schema:name pubmed_id
94 schema:value 30872702
95 rdf:type schema:PropertyValue
96 Ndc04fec64a264e87978e05271cc0ba4b schema:volumeNumber 9
97 rdf:type schema:PublicationVolume
98 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
99 schema:name Technology
100 rdf:type schema:DefinedTerm
101 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
102 schema:name Communications Technologies
103 rdf:type schema:DefinedTerm
104 sg:journal.1045337 schema:issn 2045-2322
105 schema:name Scientific Reports
106 rdf:type schema:Periodical
107 sg:pub.10.1007/s10762-018-0546-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107802428
108 https://doi.org/10.1007/s10762-018-0546-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/s41598-017-07545-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090989401
111 https://doi.org/10.1038/s41598-017-07545-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/srep08772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020840956
114 https://doi.org/10.1038/srep08772
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.2838240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057877992
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.5012018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101459242
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0022-3727/47/37/374001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041314821
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/22.989974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061127633
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/icbnmt.2009.5347808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095379065
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/icimw.2010.5613040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093649544
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/ivelec.2007.4283261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093397074
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/ivelec.2008.4556351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094927272
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/ivelec.2009.5193420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094914602
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/plasma.2010.5533941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094763767
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/t-ed.1961.14708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061457000
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/ted.2005.845799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061591583
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/ted.2013.2295771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061595918
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/ted.2014.2298753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061595958
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tthz.2011.2151610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061807303
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
147 schema:name School of Electronic and Information Engineering, Beihang University, 100191, Beijing, China
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...