Whole-Exome Sequencing in the Isolated Populations of Cilento from South Italy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

T. Nutile, D. Ruggiero, A. F. Herzig, A. Tirozzi, S. Nappo, R. Sorice, F. Marangio, C. Bellenguez, A. L. Leutenegger, M. Ciullo

ABSTRACT

The present study describes the genetic architecture of the isolated populations of Cilento, through the analysis of exome sequence data of 245 representative individuals of these populations. By annotating the exome variants and cataloguing them according to their frequency and functional effects, we identified 347,684 variants, 67.4% of which are rare and low frequency variants, and 1% of them (corresponding to 319 variants per person) are classified as high functional impact variants; also, 39,946 (11.5% of the total) are novel variants, for which we determined a significant enrichment for deleterious effects. By comparing the allele frequencies in Cilento with those from the Tuscan population from the 1000 Genomes Project Phase 3, we highlighted an increase in allele frequency in Cilento especially for variants which map to genes involved in extracellular matrix formation and organization. Furthermore, among the variants showing increased frequency we identified several known rare disease-causing variants. By different population genetics analyses, we corroborated the status of the Cilento populations as genetic isolates. Finally, we showed that exome data of Cilento represents a useful local reference panel capable of improving the accuracy of genetic imputation, thus adding power to genetic studies of human traits in these populations. More... »

PAGES

4059

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-41022-6

DOI

http://dx.doi.org/10.1038/s41598-019-41022-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112678564

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30858532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Genetics and Biophysics", 
          "id": "https://www.grid.ac/institutes/grid.419869.b", 
          "name": [
            "Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nutile", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Neurologico Mediterraneo", 
          "id": "https://www.grid.ac/institutes/grid.419543.e", 
          "name": [
            "Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy", 
            "IRCCS Neuromed, Pozzilli, Isernia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruggiero", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Inserm, UMR 946, Genetic variation and Human diseases, F-75010, Paris, France", 
            "Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, UMR946, F-75010, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzig", 
        "givenName": "A. F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Neurologico Mediterraneo", 
          "id": "https://www.grid.ac/institutes/grid.419543.e", 
          "name": [
            "IRCCS Neuromed, Pozzilli, Isernia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tirozzi", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AORN Santobono-Pausilipon Hospital, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nappo", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genetics and Biophysics", 
          "id": "https://www.grid.ac/institutes/grid.419869.b", 
          "name": [
            "Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorice", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genetics and Biophysics", 
          "id": "https://www.grid.ac/institutes/grid.419869.b", 
          "name": [
            "Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marangio", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pasteur Institute of Lille", 
          "id": "https://www.grid.ac/institutes/grid.8970.6", 
          "name": [
            "Inserm, U1167, RID-AGE-Risk factors and molecular determinants of aging-related diseases, F-59000, Lille, France", 
            "Institut Pasteur de Lille, F-59000, Lille, France", 
            "Univ. Lille, U1167-Excellence Laboratory LabEx DISTALZ, F-59000, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellenguez", 
        "givenName": "C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Inserm, UMR 946, Genetic variation and Human diseases, F-75010, Paris, France", 
            "Universit\u00e9 Paris-Diderot, Sorbonne Paris Cit\u00e9, UMR946, F-75010, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leutenegger", 
        "givenName": "A. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Neurologico Mediterraneo", 
          "id": "https://www.grid.ac/institutes/grid.419543.e", 
          "name": [
            "Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy", 
            "IRCCS Neuromed, Pozzilli, Isernia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciullo", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0155552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001140207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2012.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001463542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001826873", 
          "https://doi.org/10.1038/nature11677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005070991", 
          "https://doi.org/10.1186/s13059-016-0974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005070991", 
          "https://doi.org/10.1186/s13059-016-0974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.21623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008127951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009629440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009739594", 
          "https://doi.org/10.1038/nrg2796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009739594", 
          "https://doi.org/10.1038/nrg2796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000101964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012851637", 
          "https://doi.org/10.1038/ng.3405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2016.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013155956", 
          "https://doi.org/10.1038/ejhg.2016.23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016245914", 
          "https://doi.org/10.1038/ncomms6345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016667574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017006698", 
          "https://doi.org/10.1038/nature10659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.106534.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017056407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1606460113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019399057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020096147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020096147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020692466", 
          "https://doi.org/10.1038/ng.3247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0068604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020925505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021326074", 
          "https://doi.org/10.1038/ng.2500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812064", 
          "https://doi.org/10.1038/nature15393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/jcsb.1000168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024190051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2009.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025800233", 
          "https://doi.org/10.1038/ejhg.2009.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029709383", 
          "https://doi.org/10.1038/ng.3698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030784697", 
          "https://doi.org/10.1038/ng.3021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2014.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030844278", 
          "https://doi.org/10.1038/ejhg.2014.216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031184798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2014.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036460474", 
          "https://doi.org/10.1038/ejhg.2014.19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-016-1702-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036572761", 
          "https://doi.org/10.1007/s00439-016-1702-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-016-1702-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036572761", 
          "https://doi.org/10.1007/s00439-016-1702-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037184688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038438273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038664426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039870535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040713725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041764926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043446290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044661594", 
          "https://doi.org/10.1038/ng.781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048469441", 
          "https://doi.org/10.1038/nature14618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048886363", 
          "https://doi.org/10.1038/ncomms3872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051286628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2016.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051388311", 
          "https://doi.org/10.1038/sdata.2016.23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051618223", 
          "https://doi.org/10.1038/ncomms3739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1527654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069520238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2017.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084755074", 
          "https://doi.org/10.1038/ejhg.2017.51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1610528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085073452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085591931", 
          "https://doi.org/10.1038/ncomms15606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086127588", 
          "https://doi.org/10.1038/ncomms15927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-017-0580-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100101033", 
          "https://doi.org/10.1186/s12863-017-0580-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.22109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100288850"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The present study describes the genetic architecture of the isolated populations of Cilento, through the analysis of exome sequence data of 245 representative individuals of these populations. By annotating the exome variants and cataloguing them according to their frequency and functional effects, we identified 347,684 variants, 67.4% of which are rare and low frequency variants, and 1% of them (corresponding to 319 variants per person) are classified as high functional impact variants; also, 39,946 (11.5% of the total) are novel variants, for which we determined a significant enrichment for deleterious effects. By comparing the allele frequencies in Cilento with those from the Tuscan population from the 1000 Genomes Project Phase 3, we highlighted an increase in allele frequency in Cilento especially for variants which map to genes involved in extracellular matrix formation and organization. Furthermore, among the variants showing increased frequency we identified several known rare disease-causing variants. By different population genetics analyses, we corroborated the status of the Cilento populations as genetic isolates. Finally, we showed that exome data of Cilento represents a useful local reference panel capable of improving the accuracy of genetic imputation, thus adding power to genetic studies of human traits in these populations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-41022-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3790512", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Whole-Exome Sequencing in the Isolated Populations of Cilento from South Italy", 
    "pagination": "4059", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e424d196f23b5748e821a942e91d7d6986aa6f5255b0b9d6bcd17fccdcc283d2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30858532"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-41022-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112678564"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-41022-6", 
      "https://app.dimensions.ai/details/publication/pub.1112678564"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-41022-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41022-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41022-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41022-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-41022-6'


 

This table displays all metadata directly associated to this object as RDF triples.

313 TRIPLES      21 PREDICATES      79 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-41022-6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N77e2f915bc5d4d7c8af8abca4b01ed9d
4 schema:citation sg:pub.10.1007/s00439-016-1702-6
5 sg:pub.10.1038/ejhg.2009.97
6 sg:pub.10.1038/ejhg.2014.19
7 sg:pub.10.1038/ejhg.2014.216
8 sg:pub.10.1038/ejhg.2016.23
9 sg:pub.10.1038/ejhg.2017.51
10 sg:pub.10.1038/nature10659
11 sg:pub.10.1038/nature11677
12 sg:pub.10.1038/nature14618
13 sg:pub.10.1038/nature15393
14 sg:pub.10.1038/ncomms15606
15 sg:pub.10.1038/ncomms15927
16 sg:pub.10.1038/ncomms3739
17 sg:pub.10.1038/ncomms3872
18 sg:pub.10.1038/ncomms6345
19 sg:pub.10.1038/ng.2500
20 sg:pub.10.1038/ng.3021
21 sg:pub.10.1038/ng.3247
22 sg:pub.10.1038/ng.3405
23 sg:pub.10.1038/ng.3698
24 sg:pub.10.1038/ng.781
25 sg:pub.10.1038/nrg2796
26 sg:pub.10.1038/sdata.2016.23
27 sg:pub.10.1186/s12863-017-0580-9
28 sg:pub.10.1186/s13059-016-0974-4
29 https://doi.org/10.1002/gepi.21623
30 https://doi.org/10.1002/gepi.22109
31 https://doi.org/10.1016/j.ajhg.2012.08.007
32 https://doi.org/10.1056/nejmoa1610528
33 https://doi.org/10.1073/pnas.1606460113
34 https://doi.org/10.1086/519795
35 https://doi.org/10.1093/bioinformatics/btm108
36 https://doi.org/10.1093/bioinformatics/btu401
37 https://doi.org/10.1093/molbev/msp190
38 https://doi.org/10.1093/nar/gkn698
39 https://doi.org/10.1093/nar/gkt1113
40 https://doi.org/10.1101/gr.106534.110
41 https://doi.org/10.1101/gr.107524.110
42 https://doi.org/10.1159/000101964
43 https://doi.org/10.1371/journal.pgen.1000529
44 https://doi.org/10.1371/journal.pgen.1000849
45 https://doi.org/10.1371/journal.pgen.1003815
46 https://doi.org/10.1371/journal.pgen.1004234
47 https://doi.org/10.1371/journal.pgen.1004494
48 https://doi.org/10.1371/journal.pgen.1004976
49 https://doi.org/10.1371/journal.pgen.1005874
50 https://doi.org/10.1371/journal.pone.0068604
51 https://doi.org/10.1371/journal.pone.0155552
52 https://doi.org/10.2307/1527654
53 https://doi.org/10.4172/jcsb.1000168
54 schema:datePublished 2019-12
55 schema:datePublishedReg 2019-12-01
56 schema:description The present study describes the genetic architecture of the isolated populations of Cilento, through the analysis of exome sequence data of 245 representative individuals of these populations. By annotating the exome variants and cataloguing them according to their frequency and functional effects, we identified 347,684 variants, 67.4% of which are rare and low frequency variants, and 1% of them (corresponding to 319 variants per person) are classified as high functional impact variants; also, 39,946 (11.5% of the total) are novel variants, for which we determined a significant enrichment for deleterious effects. By comparing the allele frequencies in Cilento with those from the Tuscan population from the 1000 Genomes Project Phase 3, we highlighted an increase in allele frequency in Cilento especially for variants which map to genes involved in extracellular matrix formation and organization. Furthermore, among the variants showing increased frequency we identified several known rare disease-causing variants. By different population genetics analyses, we corroborated the status of the Cilento populations as genetic isolates. Finally, we showed that exome data of Cilento represents a useful local reference panel capable of improving the accuracy of genetic imputation, thus adding power to genetic studies of human traits in these populations.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N7d807e8b91e141cfae38b3cf77972af6
61 N8cdcc7a18a1e410cabcb3ddc8c7b128a
62 sg:journal.1045337
63 schema:name Whole-Exome Sequencing in the Isolated Populations of Cilento from South Italy
64 schema:pagination 4059
65 schema:productId N1a9cce9717b4469f8a34304ee20fc928
66 N34ff3ba4e74843449ebdeff221686df3
67 N66723c1694fd4c5a93640611f23a8932
68 Nf08242cd4e2a4844ae624755ec996862
69 Nfe8b363cc1aa474cb45e4352f34ce814
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112678564
71 https://doi.org/10.1038/s41598-019-41022-6
72 schema:sdDatePublished 2019-04-11T13:18
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Ncd7e8c66e26f44179086d3b37af3d19c
75 schema:url https://www.nature.com/articles/s41598-019-41022-6
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N10233881de174b1b87a6a672b00a3dae schema:affiliation https://www.grid.ac/institutes/grid.8970.6
80 schema:familyName Bellenguez
81 schema:givenName C.
82 rdf:type schema:Person
83 N1244c73f2bc0408191810a5a162698cb rdf:first Nfc18ccd401ec4f2cb5468513434dc490
84 rdf:rest Nfcc81dbadf5140fbad54392d765ac1b6
85 N158e525b1f9c4ab9a15d0f0c71e9b275 rdf:first N47929f0b41c643df865db222f691f12d
86 rdf:rest N6f08d5055f064332bf4958fddeac06a4
87 N1a9cce9717b4469f8a34304ee20fc928 schema:name readcube_id
88 schema:value e424d196f23b5748e821a942e91d7d6986aa6f5255b0b9d6bcd17fccdcc283d2
89 rdf:type schema:PropertyValue
90 N25305687458a4140a409d7b8a9b68387 schema:affiliation https://www.grid.ac/institutes/grid.419543.e
91 schema:familyName Ciullo
92 schema:givenName M.
93 rdf:type schema:Person
94 N34ff3ba4e74843449ebdeff221686df3 schema:name dimensions_id
95 schema:value pub.1112678564
96 rdf:type schema:PropertyValue
97 N3f96a7afc0de4688bf903a47bdf1b948 schema:affiliation https://www.grid.ac/institutes/grid.419869.b
98 schema:familyName Sorice
99 schema:givenName R.
100 rdf:type schema:Person
101 N437f83a0172f4d3ca893034cab1b8f9f rdf:first N74bcebbb83dc4dd3bd24a3fbee204437
102 rdf:rest N77dfe38d14fd448e96bf461ccb932e6d
103 N47929f0b41c643df865db222f691f12d schema:affiliation https://www.grid.ac/institutes/grid.419543.e
104 schema:familyName Ruggiero
105 schema:givenName D.
106 rdf:type schema:Person
107 N66723c1694fd4c5a93640611f23a8932 schema:name pubmed_id
108 schema:value 30858532
109 rdf:type schema:PropertyValue
110 N6f08d5055f064332bf4958fddeac06a4 rdf:first Nfa25a6e90415414ca49e61741f17f056
111 rdf:rest Nf6f80ad29ab747f2b52f84f50d2bf01f
112 N74bcebbb83dc4dd3bd24a3fbee204437 schema:affiliation https://www.grid.ac/institutes/grid.419869.b
113 schema:familyName Marangio
114 schema:givenName F.
115 rdf:type schema:Person
116 N77dfe38d14fd448e96bf461ccb932e6d rdf:first N10233881de174b1b87a6a672b00a3dae
117 rdf:rest Na5d654959fda4d5c970fedc993469465
118 N77e2f915bc5d4d7c8af8abca4b01ed9d rdf:first Ndd14905ecb6f48cb94f2c4d1f7296ca4
119 rdf:rest N158e525b1f9c4ab9a15d0f0c71e9b275
120 N7d807e8b91e141cfae38b3cf77972af6 schema:volumeNumber 9
121 rdf:type schema:PublicationVolume
122 N86780e88617f4d95966de55bc92d1415 schema:affiliation https://www.grid.ac/institutes/grid.419543.e
123 schema:familyName Tirozzi
124 schema:givenName A.
125 rdf:type schema:Person
126 N8cdcc7a18a1e410cabcb3ddc8c7b128a schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 Na57e339a760643eb959b391f62ea3874 rdf:first N25305687458a4140a409d7b8a9b68387
129 rdf:rest rdf:nil
130 Na5d654959fda4d5c970fedc993469465 rdf:first Nc692325e24e24e94afe25bcb69132d2c
131 rdf:rest Na57e339a760643eb959b391f62ea3874
132 Nc692325e24e24e94afe25bcb69132d2c schema:affiliation https://www.grid.ac/institutes/grid.7452.4
133 schema:familyName Leutenegger
134 schema:givenName A. L.
135 rdf:type schema:Person
136 Ncd7e8c66e26f44179086d3b37af3d19c schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nda922bcfc2934a34b647b86bccd1edd1 schema:name AORN Santobono-Pausilipon Hospital, Naples, Italy
139 rdf:type schema:Organization
140 Ndd14905ecb6f48cb94f2c4d1f7296ca4 schema:affiliation https://www.grid.ac/institutes/grid.419869.b
141 schema:familyName Nutile
142 schema:givenName T.
143 rdf:type schema:Person
144 Nf08242cd4e2a4844ae624755ec996862 schema:name nlm_unique_id
145 schema:value 101563288
146 rdf:type schema:PropertyValue
147 Nf6f80ad29ab747f2b52f84f50d2bf01f rdf:first N86780e88617f4d95966de55bc92d1415
148 rdf:rest N1244c73f2bc0408191810a5a162698cb
149 Nfa25a6e90415414ca49e61741f17f056 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
150 schema:familyName Herzig
151 schema:givenName A. F.
152 rdf:type schema:Person
153 Nfc18ccd401ec4f2cb5468513434dc490 schema:affiliation Nda922bcfc2934a34b647b86bccd1edd1
154 schema:familyName Nappo
155 schema:givenName S.
156 rdf:type schema:Person
157 Nfcc81dbadf5140fbad54392d765ac1b6 rdf:first N3f96a7afc0de4688bf903a47bdf1b948
158 rdf:rest N437f83a0172f4d3ca893034cab1b8f9f
159 Nfe8b363cc1aa474cb45e4352f34ce814 schema:name doi
160 schema:value 10.1038/s41598-019-41022-6
161 rdf:type schema:PropertyValue
162 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
163 schema:name Biological Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
166 schema:name Genetics
167 rdf:type schema:DefinedTerm
168 sg:grant.3790512 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-41022-6
169 rdf:type schema:MonetaryGrant
170 sg:journal.1045337 schema:issn 2045-2322
171 schema:name Scientific Reports
172 rdf:type schema:Periodical
173 sg:pub.10.1007/s00439-016-1702-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036572761
174 https://doi.org/10.1007/s00439-016-1702-6
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ejhg.2009.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025800233
177 https://doi.org/10.1038/ejhg.2009.97
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ejhg.2014.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036460474
180 https://doi.org/10.1038/ejhg.2014.19
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ejhg.2014.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030844278
183 https://doi.org/10.1038/ejhg.2014.216
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ejhg.2016.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013155956
186 https://doi.org/10.1038/ejhg.2016.23
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ejhg.2017.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084755074
189 https://doi.org/10.1038/ejhg.2017.51
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nature10659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017006698
192 https://doi.org/10.1038/nature10659
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature11677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001826873
195 https://doi.org/10.1038/nature11677
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature14618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048469441
198 https://doi.org/10.1038/nature14618
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
201 https://doi.org/10.1038/nature15393
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/ncomms15606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085591931
204 https://doi.org/10.1038/ncomms15606
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/ncomms15927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086127588
207 https://doi.org/10.1038/ncomms15927
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/ncomms3739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051618223
210 https://doi.org/10.1038/ncomms3739
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/ncomms3872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048886363
213 https://doi.org/10.1038/ncomms3872
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/ncomms6345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016245914
216 https://doi.org/10.1038/ncomms6345
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/ng.2500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021326074
219 https://doi.org/10.1038/ng.2500
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/ng.3021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030784697
222 https://doi.org/10.1038/ng.3021
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ng.3247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020692466
225 https://doi.org/10.1038/ng.3247
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/ng.3405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012851637
228 https://doi.org/10.1038/ng.3405
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ng.3698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029709383
231 https://doi.org/10.1038/ng.3698
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/ng.781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044661594
234 https://doi.org/10.1038/ng.781
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nrg2796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009739594
237 https://doi.org/10.1038/nrg2796
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/sdata.2016.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051388311
240 https://doi.org/10.1038/sdata.2016.23
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/s12863-017-0580-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100101033
243 https://doi.org/10.1186/s12863-017-0580-9
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/s13059-016-0974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005070991
246 https://doi.org/10.1186/s13059-016-0974-4
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1002/gepi.21623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008127951
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1002/gepi.22109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100288850
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.ajhg.2012.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001463542
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1056/nejmoa1610528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085073452
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1073/pnas.1606460113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019399057
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/bioinformatics/btm108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031184798
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bioinformatics/btu401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037184688
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/molbev/msp190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020096147
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/nar/gkn698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041764926
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/nar/gkt1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629440
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1101/gr.106534.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017056407
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1159/000101964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010978697
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1371/journal.pgen.1000849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016667574
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1371/journal.pgen.1003815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040713725
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1371/journal.pgen.1004234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038438273
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1371/journal.pgen.1004494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051286628
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1371/journal.pgen.1004976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038664426
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1371/journal.pgen.1005874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039870535
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1371/journal.pone.0068604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020925505
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1371/journal.pone.0155552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001140207
293 rdf:type schema:CreativeWork
294 https://doi.org/10.2307/1527654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069520238
295 rdf:type schema:CreativeWork
296 https://doi.org/10.4172/jcsb.1000168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024190051
297 rdf:type schema:CreativeWork
298 https://www.grid.ac/institutes/grid.419543.e schema:alternateName Istituto Neurologico Mediterraneo
299 schema:name IRCCS Neuromed, Pozzilli, Isernia, Italy
300 Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.419869.b schema:alternateName Institute of Genetics and Biophysics
303 schema:name Institute of Genetics and Biophysics A. Buzzati-Traverso-CNR, Naples, Italy
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
306 schema:name Inserm, UMR 946, Genetic variation and Human diseases, F-75010, Paris, France
307 Université Paris-Diderot, Sorbonne Paris Cité, UMR946, F-75010, Paris, France
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.8970.6 schema:alternateName Pasteur Institute of Lille
310 schema:name Inserm, U1167, RID-AGE-Risk factors and molecular determinants of aging-related diseases, F-59000, Lille, France
311 Institut Pasteur de Lille, F-59000, Lille, France
312 Univ. Lille, U1167-Excellence Laboratory LabEx DISTALZ, F-59000, Lille, France
313 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...