Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tangi Roussel, Lucio Frydman, Denis Le Bihan, Luisa Ciobanu

ABSTRACT

Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) indirectly measures brain activity based on neurovascular coupling, a reporter that limits both the spatial and temporal resolution of the technique as well as the cellular and metabolic specificity. Emerging methods using functional spectroscopy (fMRS) and diffusion-weighted fMRI suggest that metabolic and structural modifications are also taking place in the activated cells. This paper explores an alternative metabolic imaging approach based on Chemical Exchange Saturation Transfer (CEST) to assess potential metabolic changes induced by neuronal stimulation in rat brains at 17.2 T. An optimized CEST-fMRI data acquisition and processing protocol was developed and used to experimentally assess the feasibility of glucoCEST-based fMRI. Images acquired under glucose-sensitizing conditions showed a substantial negative contrast that highlighted the same brain regions as those activated with BOLD-fMRI. We ascribe this novel fMRI contrast to CEST's ability to monitor changes in the local concentration of glucose, a metabolite closely coupled to neuronal activity. Our findings are in good agreement with literature employing other modalities. The use of CEST-based techniques for fMRI is not limited to glucose detection; other metabolic pathways involved in neuronal activation could be potentially probed. Moreover, being non invasive, it is conceivable that the same approach can be used for human studies. More... »

PAGES

4423

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-40986-9

    DOI

    http://dx.doi.org/10.1038/s41598-019-40986-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112760992

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30872689


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CEA Saclay", 
              "id": "https://www.grid.ac/institutes/grid.457334.2", 
              "name": [
                "NeuroSpin, Commissariat \u00e0 l\u2019Energie Atomique et aux Energies Alternatives, Univerisit\u00e9 Paris-Saclay, Gif-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roussel", 
            "givenName": "Tangi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Weizmann Institute of Science", 
              "id": "https://www.grid.ac/institutes/grid.13992.30", 
              "name": [
                "Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frydman", 
            "givenName": "Lucio", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CEA Saclay", 
              "id": "https://www.grid.ac/institutes/grid.457334.2", 
              "name": [
                "NeuroSpin, Commissariat \u00e0 l\u2019Energie Atomique et aux Energies Alternatives, Univerisit\u00e9 Paris-Saclay, Gif-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Bihan", 
            "givenName": "Denis", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CEA Saclay", 
              "id": "https://www.grid.ac/institutes/grid.457334.2", 
              "name": [
                "NeuroSpin, Commissariat \u00e0 l\u2019Energie Atomique et aux Energies Alternatives, Univerisit\u00e9 Paris-Saclay, Gif-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ciobanu", 
            "givenName": "Luisa", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0006-3495(93)81441-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002018535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0306-4522(92)90329-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005885599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0306-4522(92)90329-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005885599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2003.08.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011558256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.24560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012289508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2013.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012797937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2010.10.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012830871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jnc.12667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013677999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013849497", 
              "https://doi.org/10.1038/srep19517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/sj.jcbfm.9600164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016581812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/sj.jcbfm.9600164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016581812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/sj.jcbfm.9600164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016581812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018733189", 
              "https://doi.org/10.1038/nm.3252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019299384", 
              "https://doi.org/10.1038/nm.2615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019522125", 
              "https://doi.org/10.1038/nature06976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<208::aid-nbm467>3.0.co;2-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019728440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.2014.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020604092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.2014.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020604092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.2008.134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022605052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.2008.134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022605052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.25995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022707824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/01.wcb.0000034363.37277.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023156538", 
              "https://doi.org/10.1097/01.wcb.0000034363.37277.89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2012.01.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023452510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1205902109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024775221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn1119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025208498", 
              "https://doi.org/10.1038/nrn1119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn1119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025208498", 
              "https://doi.org/10.1038/nrn1119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.2013.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025539001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/jcbfm.2013.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025539001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.0762-10.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028140338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpendo.00424.2006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029905820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1910360421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030032536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.24520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031208664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.10651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031418508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.22320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031594779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jnc.13143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032757501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/00004647-199605000-00009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032999516", 
              "https://doi.org/10.1097/00004647-199605000-00009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-199605000-00009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032999516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-199605000-00009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032999516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00999769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033215214", 
              "https://doi.org/10.1007/bf00999769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1910290613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033561485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034437233", 
              "https://doi.org/10.1038/nm.3290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.3555-14.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034995280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/00004647-199710000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036325226", 
              "https://doi.org/10.1097/00004647-199710000-00005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-199710000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036325226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-199710000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036325226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037889576", 
              "https://doi.org/10.1038/nm907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037889576", 
              "https://doi.org/10.1038/nm907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.04.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037955031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.90.21.9896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038806482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.02.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040430391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0163765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040751944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.13.5951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041993922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.03.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042025801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nbm.3237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044216176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-4159.1977.tb03919.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050723091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.21873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052714928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.21873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052714928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3260686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062602706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2017.01.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074195765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.14-08-05068.1994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082624923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.26802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086262470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.27013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092801054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.27013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092801054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781315364421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109016634"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) indirectly measures brain activity based on neurovascular coupling, a reporter that limits both the spatial and temporal resolution of the technique as well as the cellular and metabolic specificity. Emerging methods using functional spectroscopy (fMRS) and diffusion-weighted fMRI suggest that metabolic and structural modifications are also\u00a0taking place in the activated cells. This paper explores an alternative metabolic imaging approach based on Chemical Exchange Saturation Transfer (CEST) to assess potential metabolic\u00a0changes induced by neuronal stimulation in rat brains at 17.2\u2009T. An optimized CEST-fMRI data acquisition and processing protocol was developed and used to experimentally assess the feasibility of glucoCEST-based fMRI. Images acquired under glucose-sensitizing conditions showed a substantial negative contrast that highlighted the same brain regions as those activated with BOLD-fMRI. We ascribe this novel fMRI contrast to CEST's ability to monitor changes in the local concentration of glucose, a metabolite closely coupled to neuronal activity. Our findings are in good agreement with literature employing other modalities. The use of CEST-based techniques for fMRI is not limited to glucose detection; other metabolic pathways involved in neuronal activation could be potentially probed. Moreover, being non invasive, it is conceivable that the same approach can be used for human studies.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-40986-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4520948", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields", 
        "pagination": "4423", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4002f287eaed4bc5541802155fc783339ad0717e43e34101f96c3aba33ea7b57"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30872689"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-40986-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112760992"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-40986-9", 
          "https://app.dimensions.ai/details/publication/pub.1112760992"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78944_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-40986-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40986-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40986-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40986-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40986-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      21 PREDICATES      81 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-40986-9 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author Nf25aa00996df453c85b87471fb9cad04
    4 schema:citation sg:pub.10.1007/bf00999769
    5 sg:pub.10.1038/nature06976
    6 sg:pub.10.1038/nm.2615
    7 sg:pub.10.1038/nm.3252
    8 sg:pub.10.1038/nm.3290
    9 sg:pub.10.1038/nm907
    10 sg:pub.10.1038/nrn1119
    11 sg:pub.10.1038/srep19517
    12 sg:pub.10.1097/00004647-199605000-00009
    13 sg:pub.10.1097/00004647-199710000-00005
    14 sg:pub.10.1097/01.wcb.0000034363.37277.89
    15 https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<208::aid-nbm467>3.0.co;2-s
    16 https://doi.org/10.1002/hbm.22320
    17 https://doi.org/10.1002/mrm.10651
    18 https://doi.org/10.1002/mrm.1910290613
    19 https://doi.org/10.1002/mrm.1910360421
    20 https://doi.org/10.1002/mrm.21873
    21 https://doi.org/10.1002/mrm.24520
    22 https://doi.org/10.1002/mrm.24560
    23 https://doi.org/10.1002/mrm.25995
    24 https://doi.org/10.1002/mrm.26802
    25 https://doi.org/10.1002/mrm.27013
    26 https://doi.org/10.1002/nbm.3237
    27 https://doi.org/10.1016/0306-4522(92)90329-z
    28 https://doi.org/10.1016/j.jneumeth.2013.02.016
    29 https://doi.org/10.1016/j.mri.2003.08.028
    30 https://doi.org/10.1016/j.neuroimage.2010.10.017
    31 https://doi.org/10.1016/j.neuroimage.2012.01.013
    32 https://doi.org/10.1016/j.neuroimage.2013.04.045
    33 https://doi.org/10.1016/j.neuroimage.2015.02.040
    34 https://doi.org/10.1016/j.neuroimage.2015.03.018
    35 https://doi.org/10.1016/j.neuroimage.2017.01.055
    36 https://doi.org/10.1016/s0006-3495(93)81441-3
    37 https://doi.org/10.1038/jcbfm.2008.134
    38 https://doi.org/10.1038/jcbfm.2013.79
    39 https://doi.org/10.1038/jcbfm.2014.97
    40 https://doi.org/10.1038/sj.jcbfm.9600164
    41 https://doi.org/10.1073/pnas.1205902109
    42 https://doi.org/10.1073/pnas.89.13.5951
    43 https://doi.org/10.1073/pnas.90.21.9896
    44 https://doi.org/10.1097/00004647-199605000-00009
    45 https://doi.org/10.1097/00004647-199710000-00005
    46 https://doi.org/10.1111/j.1471-4159.1977.tb03919.x
    47 https://doi.org/10.1111/jnc.12667
    48 https://doi.org/10.1111/jnc.13143
    49 https://doi.org/10.1126/science.3260686
    50 https://doi.org/10.1152/ajpendo.00424.2006
    51 https://doi.org/10.1201/9781315364421
    52 https://doi.org/10.1371/journal.pone.0163765
    53 https://doi.org/10.1523/jneurosci.0762-10.2010
    54 https://doi.org/10.1523/jneurosci.14-08-05068.1994
    55 https://doi.org/10.1523/jneurosci.3555-14.2015
    56 schema:datePublished 2019-12
    57 schema:datePublishedReg 2019-12-01
    58 schema:description Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) indirectly measures brain activity based on neurovascular coupling, a reporter that limits both the spatial and temporal resolution of the technique as well as the cellular and metabolic specificity. Emerging methods using functional spectroscopy (fMRS) and diffusion-weighted fMRI suggest that metabolic and structural modifications are also taking place in the activated cells. This paper explores an alternative metabolic imaging approach based on Chemical Exchange Saturation Transfer (CEST) to assess potential metabolic changes induced by neuronal stimulation in rat brains at 17.2 T. An optimized CEST-fMRI data acquisition and processing protocol was developed and used to experimentally assess the feasibility of glucoCEST-based fMRI. Images acquired under glucose-sensitizing conditions showed a substantial negative contrast that highlighted the same brain regions as those activated with BOLD-fMRI. We ascribe this novel fMRI contrast to CEST's ability to monitor changes in the local concentration of glucose, a metabolite closely coupled to neuronal activity. Our findings are in good agreement with literature employing other modalities. The use of CEST-based techniques for fMRI is not limited to glucose detection; other metabolic pathways involved in neuronal activation could be potentially probed. Moreover, being non invasive, it is conceivable that the same approach can be used for human studies.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree true
    62 schema:isPartOf N257d78593b7147cebadf60d8e1e7500d
    63 Nf4015e636fc84ac0a05f3060adca2c62
    64 sg:journal.1045337
    65 schema:name Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields
    66 schema:pagination 4423
    67 schema:productId N102d6e28a6fd43f79cfb010cfef941b8
    68 N1a0715910e7a4804a0ca85d1f68d6fb7
    69 N44cf8ed8445345cca20ef3a086eb822e
    70 N49d9ebe668a64088b6a8d4b226ad8294
    71 Nd104d345371545e1a59b9128e3921ec2
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112760992
    73 https://doi.org/10.1038/s41598-019-40986-9
    74 schema:sdDatePublished 2019-04-11T13:18
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Na9120357ac9340e6897a9d5e14aa0be3
    77 schema:url https://www.nature.com/articles/s41598-019-40986-9
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N102d6e28a6fd43f79cfb010cfef941b8 schema:name doi
    82 schema:value 10.1038/s41598-019-40986-9
    83 rdf:type schema:PropertyValue
    84 N1a0715910e7a4804a0ca85d1f68d6fb7 schema:name nlm_unique_id
    85 schema:value 101563288
    86 rdf:type schema:PropertyValue
    87 N257d78593b7147cebadf60d8e1e7500d schema:volumeNumber 9
    88 rdf:type schema:PublicationVolume
    89 N44cf8ed8445345cca20ef3a086eb822e schema:name readcube_id
    90 schema:value 4002f287eaed4bc5541802155fc783339ad0717e43e34101f96c3aba33ea7b57
    91 rdf:type schema:PropertyValue
    92 N49d9ebe668a64088b6a8d4b226ad8294 schema:name pubmed_id
    93 schema:value 30872689
    94 rdf:type schema:PropertyValue
    95 N49f5cb2c142045cdac0a609ec6ccf3b5 rdf:first N4e9d9856dd434ea5bf2c4995b864bf49
    96 rdf:rest N88572767de4a4569abf86f56f38b073a
    97 N4e9d9856dd434ea5bf2c4995b864bf49 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
    98 schema:familyName Le Bihan
    99 schema:givenName Denis
    100 rdf:type schema:Person
    101 N88572767de4a4569abf86f56f38b073a rdf:first Nb4be59af3d234be596da2d3183820ae6
    102 rdf:rest rdf:nil
    103 Na9120357ac9340e6897a9d5e14aa0be3 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nb4be59af3d234be596da2d3183820ae6 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
    106 schema:familyName Ciobanu
    107 schema:givenName Luisa
    108 rdf:type schema:Person
    109 Nb77a1c166e684b4e9c800fc90467e8e4 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
    110 schema:familyName Frydman
    111 schema:givenName Lucio
    112 rdf:type schema:Person
    113 Nbac763bf5533438f997cfc470b3b9f2e schema:affiliation https://www.grid.ac/institutes/grid.457334.2
    114 schema:familyName Roussel
    115 schema:givenName Tangi
    116 rdf:type schema:Person
    117 Nd104d345371545e1a59b9128e3921ec2 schema:name dimensions_id
    118 schema:value pub.1112760992
    119 rdf:type schema:PropertyValue
    120 Nea56206963434f48a682b6c36111dd36 rdf:first Nb77a1c166e684b4e9c800fc90467e8e4
    121 rdf:rest N49f5cb2c142045cdac0a609ec6ccf3b5
    122 Nf25aa00996df453c85b87471fb9cad04 rdf:first Nbac763bf5533438f997cfc470b3b9f2e
    123 rdf:rest Nea56206963434f48a682b6c36111dd36
    124 Nf4015e636fc84ac0a05f3060adca2c62 schema:issueNumber 1
    125 rdf:type schema:PublicationIssue
    126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Medical and Health Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Neurosciences
    131 rdf:type schema:DefinedTerm
    132 sg:grant.4520948 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40986-9
    133 rdf:type schema:MonetaryGrant
    134 sg:journal.1045337 schema:issn 2045-2322
    135 schema:name Scientific Reports
    136 rdf:type schema:Periodical
    137 sg:pub.10.1007/bf00999769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033215214
    138 https://doi.org/10.1007/bf00999769
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nature06976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019522125
    141 https://doi.org/10.1038/nature06976
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/nm.2615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019299384
    144 https://doi.org/10.1038/nm.2615
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nm.3252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018733189
    147 https://doi.org/10.1038/nm.3252
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nm.3290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034437233
    150 https://doi.org/10.1038/nm.3290
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nm907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037889576
    153 https://doi.org/10.1038/nm907
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nrn1119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025208498
    156 https://doi.org/10.1038/nrn1119
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/srep19517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013849497
    159 https://doi.org/10.1038/srep19517
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1097/00004647-199605000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032999516
    162 https://doi.org/10.1097/00004647-199605000-00009
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1097/00004647-199710000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036325226
    165 https://doi.org/10.1097/00004647-199710000-00005
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1097/01.wcb.0000034363.37277.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023156538
    168 https://doi.org/10.1097/01.wcb.0000034363.37277.89
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<208::aid-nbm467>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1019728440
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1002/hbm.22320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031594779
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1002/mrm.10651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031418508
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1002/mrm.1910290613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033561485
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1002/mrm.1910360421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030032536
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/mrm.21873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714928
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/mrm.24520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031208664
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/mrm.24560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012289508
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1002/mrm.25995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022707824
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1002/mrm.26802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086262470
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1002/mrm.27013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092801054
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1002/nbm.3237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044216176
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/0306-4522(92)90329-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005885599
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.jneumeth.2013.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012797937
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.mri.2003.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011558256
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.neuroimage.2010.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012830871
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.neuroimage.2012.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023452510
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.neuroimage.2013.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037955031
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.neuroimage.2015.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040430391
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.neuroimage.2015.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042025801
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.neuroimage.2017.01.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074195765
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/s0006-3495(93)81441-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002018535
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1038/jcbfm.2008.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022605052
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1038/jcbfm.2013.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025539001
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1038/jcbfm.2014.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020604092
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1038/sj.jcbfm.9600164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016581812
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1073/pnas.1205902109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024775221
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1073/pnas.89.13.5951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041993922
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1073/pnas.90.21.9896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038806482
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1097/00004647-199605000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032999516
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1097/00004647-199710000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036325226
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1111/j.1471-4159.1977.tb03919.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050723091
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1111/jnc.12667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013677999
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1111/jnc.13143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032757501
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1126/science.3260686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062602706
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1152/ajpendo.00424.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029905820
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1201/9781315364421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109016634
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1371/journal.pone.0163765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040751944
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1523/jneurosci.0762-10.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028140338
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1523/jneurosci.14-08-05068.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082624923
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1523/jneurosci.3555-14.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034995280
    251 rdf:type schema:CreativeWork
    252 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
    253 schema:name Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
    254 rdf:type schema:Organization
    255 https://www.grid.ac/institutes/grid.457334.2 schema:alternateName CEA Saclay
    256 schema:name NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, Univerisité Paris-Saclay, Gif-sur-Yvette, France
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...