Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Koki Nishitsuji, Asuka Arimoto, Yoshimi Higa, Munekazu Mekaru, Mayumi Kawamitsu, Noriyuki Satoh, Eiichi Shoguchi

ABSTRACT

The brown alga, Nemacystus decipiens ("ito-mozuku" in Japanese), is one of the major edible seaweeds, cultivated principally in Okinawa, Japan. N. decipiens is also a significant source of fucoidan, which has various physiological activities. To facilitate brown algal studies, we decoded the ~154 Mbp draft genome of N. decipiens Onna-1 strain. The genome is estimated to contain 15,156 protein-coding genes, ~78% of which are substantiated by corresponding mRNAs. Mitochondrial genes analysis showed a close relationship between N. decipiens and Cladosiphon okamuranus. Comparisons with the C. okamuranus and Ectocarpus siliculosus genomes identified a set of N. decipiens-specific genes. Gene ontology annotation showed more than half of these are classified as molecular function, enzymatic activity, and/or biological process. Extracellular matrix analysis revealed domains shared among three brown algae. Characterization of genes that encode enzymes involved in the biosynthetic pathway for sulfated fucan showed two sets of genes fused in the genome. One is a fusion of L-fucokinase and GDP-fucose pyrophosphorylase genes, a feature shared with C. okamuranus. Another fusion is between an ST-domain-containing gene and an alpha/beta hydrolase gene. Although the function of fused genes should be examined in future, these results suggest that N. decipiens is another promising source of fucoidan. More... »

PAGES

4607

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40955-2

DOI

http://dx.doi.org/10.1038/s41598-019-40955-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112766943

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30872679


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Okinawa Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.250464.1", 
          "name": [
            "Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishitsuji", 
        "givenName": "Koki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okinawa Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.250464.1", 
          "name": [
            "Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arimoto", 
        "givenName": "Asuka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Onna Fisheries Cooperative, 904-0414, Onna, Okinawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higa", 
        "givenName": "Yoshimi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Onna Fisheries Cooperative, 904-0414, Onna, Okinawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mekaru", 
        "givenName": "Munekazu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okinawa Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.250464.1", 
          "name": [
            "DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamitsu", 
        "givenName": "Mayumi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okinawa Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.250464.1", 
          "name": [
            "Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Satoh", 
        "givenName": "Noriyuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okinawa Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.250464.1", 
          "name": [
            "Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shoguchi", 
        "givenName": "Eiichi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.170720.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000698987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000848409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002022998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003376662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003673366", 
          "https://doi.org/10.1038/ncomms7986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/pr.109.001289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004049485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.32.11.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004405244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005353474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dst049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006723679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margen.2016.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007332337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007915246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007915246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dsw039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010167710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.094607.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010225667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013612578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014996474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018016237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020601630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024464679", 
          "https://doi.org/10.1186/1471-2105-9-393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.006064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026034961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0721-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026229827", 
          "https://doi.org/10.1186/s13059-015-0721-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0721-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026229827", 
          "https://doi.org/10.1186/s13059-015-0721-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030654686", 
          "https://doi.org/10.1038/nature09016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030654686", 
          "https://doi.org/10.1038/nature09016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030736062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032453140", 
          "https://doi.org/10.1007/bf00046102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032453140", 
          "https://doi.org/10.1007/bf00046102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032486702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2049-2618-2-26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033360565", 
          "https://doi.org/10.1186/2049-2618-2-26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034760860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036320682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038560283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dss005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038933418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1271/bbb.63.1813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042352010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042604359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044030989", 
          "https://doi.org/10.1038/nature08696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044030989", 
          "https://doi.org/10.1038/nature08696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000084979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044099907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000084979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044099907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7872/crya.v35.iss2.2014.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046374920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.14321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049894869", 
          "https://doi.org/10.1038/nmeth.1701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050668915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051356507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.074492.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2010.03374.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052779185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2014.2346248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061814253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.6.1419-1424.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062724579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081466042", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083842455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btx153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084178212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10811-017-1144-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085050717", 
          "https://doi.org/10.1007/s10811-017-1144-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10811-017-1144-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085050717", 
          "https://doi.org/10.1007/s10811-017-1144-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085221153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105496101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105496101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105496101"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The brown alga, Nemacystus decipiens (\"ito-mozuku\" in Japanese), is one of the major edible seaweeds, cultivated principally in Okinawa, Japan. N. decipiens is also a significant source of fucoidan, which has various physiological activities. To facilitate brown algal studies, we decoded the ~154 Mbp draft genome of N. decipiens Onna-1 strain. The genome is estimated to contain 15,156 protein-coding genes, ~78% of which are substantiated by corresponding mRNAs. Mitochondrial genes analysis showed a close relationship between N. decipiens and Cladosiphon okamuranus. Comparisons with the C. okamuranus and Ectocarpus siliculosus genomes identified a set of N. decipiens-specific genes. Gene ontology annotation showed more than half of these are classified as molecular function, enzymatic activity, and/or biological process. Extracellular matrix analysis revealed domains shared among three brown algae. Characterization of genes that encode enzymes involved in the biosynthetic pathway for sulfated fucan showed two sets of genes fused in the genome. One is a fusion of L-fucokinase and GDP-fucose pyrophosphorylase genes, a feature shared with C. okamuranus. Another fusion is between an ST-domain-containing gene and an alpha/beta hydrolase gene. Although the function of fused genes should be examined in future, these results suggest that N. decipiens is another promising source of fucoidan.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40955-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway", 
    "pagination": "4607", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb8e303abcb9685469a2bafbd4c070c038b5f035a00af143b7fe09044a28e48c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30872679"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40955-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112766943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40955-2", 
      "https://app.dimensions.ai/details/publication/pub.1112766943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40955-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40955-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40955-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40955-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40955-2'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      81 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40955-2 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nf1ed2c59619b41fa808f67e244dac66e
4 schema:citation sg:pub.10.1007/bf00046102
5 sg:pub.10.1007/s10811-017-1144-0
6 sg:pub.10.1038/nature08696
7 sg:pub.10.1038/nature09016
8 sg:pub.10.1038/ncomms7986
9 sg:pub.10.1038/nmeth.1701
10 sg:pub.10.1186/1471-2105-9-393
11 sg:pub.10.1186/2049-2618-2-26
12 sg:pub.10.1186/s13059-015-0721-2
13 https://app.dimensions.ai/details/publication/pub.1081466042
14 https://doi.org/10.1006/jmbi.2000.4315
15 https://doi.org/10.1016/j.cell.2018.06.033
16 https://doi.org/10.1016/j.gde.2006.10.009
17 https://doi.org/10.1016/j.margen.2016.12.002
18 https://doi.org/10.1093/bioinformatics/14.9.755
19 https://doi.org/10.1093/bioinformatics/bti1018
20 https://doi.org/10.1093/bioinformatics/btm071
21 https://doi.org/10.1093/bioinformatics/btn013
22 https://doi.org/10.1093/bioinformatics/btp348
23 https://doi.org/10.1093/bioinformatics/btq683
24 https://doi.org/10.1093/bioinformatics/btr011
25 https://doi.org/10.1093/bioinformatics/btr059
26 https://doi.org/10.1093/bioinformatics/bts094
27 https://doi.org/10.1093/bioinformatics/btu031
28 https://doi.org/10.1093/bioinformatics/btu033
29 https://doi.org/10.1093/bioinformatics/btu170
30 https://doi.org/10.1093/bioinformatics/btx153
31 https://doi.org/10.1093/dnares/dss005
32 https://doi.org/10.1093/dnares/dst049
33 https://doi.org/10.1093/dnares/dsw039
34 https://doi.org/10.1093/molbev/msh075
35 https://doi.org/10.1093/nar/gkf436
36 https://doi.org/10.1093/nar/gkg770
37 https://doi.org/10.1093/nar/gkj149
38 https://doi.org/10.1093/nar/gkm160
39 https://doi.org/10.1093/nar/gkp335
40 https://doi.org/10.1093/nar/gks1067
41 https://doi.org/10.1093/nar/gkw955
42 https://doi.org/10.1093/nar/gkx391
43 https://doi.org/10.1101/gr.074492.107
44 https://doi.org/10.1101/gr.094607.109
45 https://doi.org/10.1101/gr.170720.113
46 https://doi.org/10.1109/tvcg.2014.2346248
47 https://doi.org/10.1111/j.1469-8137.2010.03374.x
48 https://doi.org/10.1111/nph.14321
49 https://doi.org/10.1124/pr.109.001289
50 https://doi.org/10.1128/aac.32.11.1742
51 https://doi.org/10.1128/jb.177.6.1419-1424.1995
52 https://doi.org/10.1159/000084979
53 https://doi.org/10.1242/jcs.006064
54 https://doi.org/10.1271/bbb.63.1813
55 https://doi.org/10.7872/crya.v35.iss2.2014.117
56 schema:datePublished 2019-12
57 schema:datePublishedReg 2019-12-01
58 schema:description The brown alga, Nemacystus decipiens ("ito-mozuku" in Japanese), is one of the major edible seaweeds, cultivated principally in Okinawa, Japan. N. decipiens is also a significant source of fucoidan, which has various physiological activities. To facilitate brown algal studies, we decoded the ~154 Mbp draft genome of N. decipiens Onna-1 strain. The genome is estimated to contain 15,156 protein-coding genes, ~78% of which are substantiated by corresponding mRNAs. Mitochondrial genes analysis showed a close relationship between N. decipiens and Cladosiphon okamuranus. Comparisons with the C. okamuranus and Ectocarpus siliculosus genomes identified a set of N. decipiens-specific genes. Gene ontology annotation showed more than half of these are classified as molecular function, enzymatic activity, and/or biological process. Extracellular matrix analysis revealed domains shared among three brown algae. Characterization of genes that encode enzymes involved in the biosynthetic pathway for sulfated fucan showed two sets of genes fused in the genome. One is a fusion of L-fucokinase and GDP-fucose pyrophosphorylase genes, a feature shared with C. okamuranus. Another fusion is between an ST-domain-containing gene and an alpha/beta hydrolase gene. Although the function of fused genes should be examined in future, these results suggest that N. decipiens is another promising source of fucoidan.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N0ad50aaa583f4450b5be76dea2078a05
63 N57991305636d4d78b96bac31c779c19d
64 sg:journal.1045337
65 schema:name Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway
66 schema:pagination 4607
67 schema:productId N13a58b6b9a614ea8ab5b79ac33f74fcd
68 N55d5a842423b4d9da112e81edab6e8fc
69 Na0f0ae235b704dd3b90c3a8cd4f9902c
70 Nb91ad0c59b494ab5b1c53d944447efda
71 Nf598d576030d437fafeab11e9498b0c5
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112766943
73 https://doi.org/10.1038/s41598-019-40955-2
74 schema:sdDatePublished 2019-04-11T13:19
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N86f835e39c914be4b0bf4b44a335343a
77 schema:url https://www.nature.com/articles/s41598-019-40955-2
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0ad50aaa583f4450b5be76dea2078a05 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N1142fb7aa8db4de98c102ef2760f4980 schema:affiliation N5bfd819d9ab849bbb4423271841afaf6
84 schema:familyName Higa
85 schema:givenName Yoshimi
86 rdf:type schema:Person
87 N13a58b6b9a614ea8ab5b79ac33f74fcd schema:name readcube_id
88 schema:value cb8e303abcb9685469a2bafbd4c070c038b5f035a00af143b7fe09044a28e48c
89 rdf:type schema:PropertyValue
90 N20dadc11ba9041d787affb1f5d0a6ac6 schema:affiliation https://www.grid.ac/institutes/grid.250464.1
91 schema:familyName Shoguchi
92 schema:givenName Eiichi
93 rdf:type schema:Person
94 N411a2f4be6154095918b41b159e73ba4 schema:name Onna Fisheries Cooperative, 904-0414, Onna, Okinawa, Japan
95 rdf:type schema:Organization
96 N5582bc60604e41548cab5785a7fe5c16 rdf:first N82fdfc503274488fa19f4e05e2af954f
97 rdf:rest Nb74faada8ad94b58b04d6933d9e59b86
98 N55d5a842423b4d9da112e81edab6e8fc schema:name pubmed_id
99 schema:value 30872679
100 rdf:type schema:PropertyValue
101 N57991305636d4d78b96bac31c779c19d schema:volumeNumber 9
102 rdf:type schema:PublicationVolume
103 N588b8eb3639249719e66e9c61cd694de schema:affiliation https://www.grid.ac/institutes/grid.250464.1
104 schema:familyName Nishitsuji
105 schema:givenName Koki
106 rdf:type schema:Person
107 N5bfd819d9ab849bbb4423271841afaf6 schema:name Onna Fisheries Cooperative, 904-0414, Onna, Okinawa, Japan
108 rdf:type schema:Organization
109 N5dffbf3e4b3a4e26985304153c4fd62c schema:affiliation https://www.grid.ac/institutes/grid.250464.1
110 schema:familyName Satoh
111 schema:givenName Noriyuki
112 rdf:type schema:Person
113 N812c9429629c4f03ae4167984627bf75 rdf:first N5dffbf3e4b3a4e26985304153c4fd62c
114 rdf:rest Nc48c7086ea654af1b1ee4325ac14c535
115 N82fdfc503274488fa19f4e05e2af954f schema:affiliation https://www.grid.ac/institutes/grid.250464.1
116 schema:familyName Arimoto
117 schema:givenName Asuka
118 rdf:type schema:Person
119 N86f835e39c914be4b0bf4b44a335343a schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Na0f0ae235b704dd3b90c3a8cd4f9902c schema:name dimensions_id
122 schema:value pub.1112766943
123 rdf:type schema:PropertyValue
124 Na9885c1b6fd54a479a050da0c7fd31e4 schema:affiliation N411a2f4be6154095918b41b159e73ba4
125 schema:familyName Mekaru
126 schema:givenName Munekazu
127 rdf:type schema:Person
128 Nb1d2f212d8d04fe2a5ec9669301ea256 rdf:first Na9885c1b6fd54a479a050da0c7fd31e4
129 rdf:rest Ndab2a5e3813a4df8883ef565c87c67e4
130 Nb74faada8ad94b58b04d6933d9e59b86 rdf:first N1142fb7aa8db4de98c102ef2760f4980
131 rdf:rest Nb1d2f212d8d04fe2a5ec9669301ea256
132 Nb91ad0c59b494ab5b1c53d944447efda schema:name doi
133 schema:value 10.1038/s41598-019-40955-2
134 rdf:type schema:PropertyValue
135 Nc48c7086ea654af1b1ee4325ac14c535 rdf:first N20dadc11ba9041d787affb1f5d0a6ac6
136 rdf:rest rdf:nil
137 Ndab2a5e3813a4df8883ef565c87c67e4 rdf:first Ne1b2736fd03c4913b2a55b6fef19b1a5
138 rdf:rest N812c9429629c4f03ae4167984627bf75
139 Ne1b2736fd03c4913b2a55b6fef19b1a5 schema:affiliation https://www.grid.ac/institutes/grid.250464.1
140 schema:familyName Kawamitsu
141 schema:givenName Mayumi
142 rdf:type schema:Person
143 Nf1ed2c59619b41fa808f67e244dac66e rdf:first N588b8eb3639249719e66e9c61cd694de
144 rdf:rest N5582bc60604e41548cab5785a7fe5c16
145 Nf598d576030d437fafeab11e9498b0c5 schema:name nlm_unique_id
146 schema:value 101563288
147 rdf:type schema:PropertyValue
148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biological Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
152 schema:name Genetics
153 rdf:type schema:DefinedTerm
154 sg:journal.1045337 schema:issn 2045-2322
155 schema:name Scientific Reports
156 rdf:type schema:Periodical
157 sg:pub.10.1007/bf00046102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453140
158 https://doi.org/10.1007/bf00046102
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10811-017-1144-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085050717
161 https://doi.org/10.1007/s10811-017-1144-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature08696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044030989
164 https://doi.org/10.1038/nature08696
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature09016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030654686
167 https://doi.org/10.1038/nature09016
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ncomms7986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003673366
170 https://doi.org/10.1038/ncomms7986
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nmeth.1701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049894869
173 https://doi.org/10.1038/nmeth.1701
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-9-393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024464679
176 https://doi.org/10.1186/1471-2105-9-393
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/2049-2618-2-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033360565
179 https://doi.org/10.1186/2049-2618-2-26
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/s13059-015-0721-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026229827
182 https://doi.org/10.1186/s13059-015-0721-2
183 rdf:type schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1081466042 schema:CreativeWork
185 https://doi.org/10.1006/jmbi.2000.4315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016237
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cell.2018.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105496101
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.gde.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381556
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.margen.2016.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007332337
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/bti1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002022998
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/btm071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014996474
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/btn013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042604359
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/btp348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020601630
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/btq683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051356507
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/btr011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032486702
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btr059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034760860
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/bts094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867103
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btu031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036320682
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btu033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000848409
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/btx153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084178212
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/dnares/dss005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038933418
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/dnares/dst049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006723679
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/dnares/dsw039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010167710
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/molbev/msh075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005353474
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/nar/gkf436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376662
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/nar/gkg770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050668915
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/nar/gkj149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612578
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/nar/gkm160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030736062
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/nar/gkp335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007915246
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/nar/gks1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038560283
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkw955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083842455
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/nar/gkx391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085221153
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1101/gr.074492.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720574
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1101/gr.094607.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010225667
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1101/gr.170720.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000698987
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1109/tvcg.2014.2346248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814253
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/j.1469-8137.2010.03374.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052779185
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1111/nph.14321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269014
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1124/pr.109.001289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004049485
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1128/aac.32.11.1742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004405244
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1128/jb.177.6.1419-1424.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062724579
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1159/000084979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099907
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1242/jcs.006064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026034961
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1271/bbb.63.1813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042352010
266 rdf:type schema:CreativeWork
267 https://doi.org/10.7872/crya.v35.iss2.2014.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046374920
268 rdf:type schema:CreativeWork
269 https://www.grid.ac/institutes/grid.250464.1 schema:alternateName Okinawa Institute of Science and Technology
270 schema:name DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
271 Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...