Dark-exciton valley dynamics in transition metal dichalcogenide alloy monolayers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Helena Bragança, Flávio Riche, Fanyao Qu, Victor Lopez-Richard, Gilmar Eugenio Marques

ABSTRACT

We report a comprehensive theory to describe exciton and biexciton valley dynamics in monolayer Mo1-xWxSe2 alloys. To probe the impact of different excitonic channels, including bright and dark excitons, intravalley biexcitons, intervalley scattering between bright excitons, as well as bright biexcitons, we have performed a systematic study from the simplest system to the most complex one. In contrast to the binary WSe2 monolayer with weak photoluminescence (PL) and high valley polarization at low temperatures and the MoSe2, that presents high PL intensity, but low valley polarization, our results demonstrate that it is possible to set up a ternary alloy with intermediate W-concentration that holds simultaneously a considerably robust light emission and an efficient optical orientation of the valley pseudospin. We find the critical value of W-concentration, xc, that turns alloys from bright to darkish. The dependence of the PL intensity on temperature shows three regimes: while bright monolayer alloys display a usual temperature dependence in which the intensity decreases with rising temperature, the darkish alloys exhibit the opposite behavior, and the alloys with x around xc show a non-monotonic temperature response. Remarkably, we observe that the biexciton enhances significantly the stability of the exciton emission against fluctuations of W-concentration for bright alloys. Our findings pave the way for developing high-performance valleytronic and photo-emitting devices. More... »

PAGES

4575

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-40932-9

    DOI

    http://dx.doi.org/10.1038/s41598-019-40932-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112765355

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30872667


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Carlos", 
              "id": "https://www.grid.ac/institutes/grid.411247.5", 
              "name": [
                "Departamento de F\u00edsica, Universidade Federal de S\u00e3o Carlos, 13565-905, S\u00e3o Carlos, SP, Brazil", 
                "Instituto de F\u00edsica, Universidade de Bras\u00edlia, 70919-970, Bras\u00edlia-DF, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bragan\u00e7a", 
            "givenName": "Helena", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Instituto de F\u00edsica, Universidade de Bras\u00edlia, 70919-970, Bras\u00edlia-DF, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riche", 
            "givenName": "Fl\u00e1vio", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Instituto de F\u00edsica, Universidade de Bras\u00edlia, 70919-970, Bras\u00edlia-DF, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qu", 
            "givenName": "Fanyao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Carlos", 
              "id": "https://www.grid.ac/institutes/grid.411247.5", 
              "name": [
                "Departamento de F\u00edsica, Universidade Federal de S\u00e3o Carlos, 13565-905, S\u00e3o Carlos, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopez-Richard", 
            "givenName": "Victor", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Carlos", 
              "id": "https://www.grid.ac/institutes/grid.411247.5", 
              "name": [
                "Departamento de F\u00edsica, Universidade Federal de S\u00e3o Carlos, 13565-905, S\u00e3o Carlos, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marques", 
            "givenName": "Gilmar Eugenio", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/2053-1583/aa5521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003303304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(91)90761-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003639384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(91)90761-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003639384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003857275", 
              "https://doi.org/10.1038/nnano.2013.151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.153402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004102128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.153402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004102128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.136805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004648868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.136805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004648868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn303973r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007589356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.245436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011676895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.245436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011676895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn401420h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012629281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4895471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013958634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(92)90121-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016679769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(92)90121-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016679769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4834358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019908774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/44/12/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021893018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021994102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021994102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028133339", 
              "https://doi.org/10.1038/ncomms13279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028219354", 
              "https://doi.org/10.1038/nnano.2012.193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030701671", 
              "https://doi.org/10.1038/nphys3891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903868w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031417418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903868w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031417418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nsr/nwu078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033118741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5nr01536g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034721653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035447357", 
              "https://doi.org/10.1038/ncomms10110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037682572", 
              "https://doi.org/10.1038/nphys3324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5nr05712d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038078656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn400280c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038090434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-matsci-070214-021034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038935153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041358474", 
              "https://doi.org/10.1038/nphys3674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.5b05556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041402413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.205303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042460651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.205303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042460651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049548334", 
              "https://doi.org/10.1038/ncomms1882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051055301", 
              "https://doi.org/10.1038/ncomms12715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.021024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052486939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.021024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052486939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b04171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055121959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl503799t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4768299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058064022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2053-1583/aa58a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059182986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.8989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060562272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.8989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060562272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.15776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.15776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.125431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.125431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060647263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.045414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.045414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.176801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.176801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.257403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.257403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.127402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.127402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.257404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060826909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.257404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060826909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josab.33.000c39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065176119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128898", 
              "https://doi.org/10.1038/ncomms14670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-00068-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084130217", 
              "https://doi.org/10.1038/s41598-017-00068-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2053-1583/aa70f9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085330061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4983285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085370389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086182729", 
              "https://doi.org/10.1038/nnano.2017.105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086182729", 
              "https://doi.org/10.1038/nnano.2017.105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090275464", 
              "https://doi.org/10.1038/ncomms15552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/aa6d39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090708028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.127403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091952670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.127403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091952670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevmaterials.2.014002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100502502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevmaterials.2.014002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100502502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.97.115425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101640429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.97.115425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101640429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.90.021001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103306737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.90.021001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103306737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.8b01484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104150279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-648x/aac61a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104164600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.121.057402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105983633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.121.057402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105983633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41699-018-0074-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106088209", 
              "https://doi.org/10.1038/s41699-018-0074-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05863-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106858937", 
              "https://doi.org/10.1038/s41467-018-05863-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05917-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106858938", 
              "https://doi.org/10.1038/s41467-018-05917-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0281-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107298743", 
              "https://doi.org/10.1038/s41565-018-0281-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.98.195302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109806596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.98.195302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109806596"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "We report a comprehensive theory to describe exciton and biexciton valley dynamics in monolayer Mo1-xWxSe2 alloys. To probe the impact of different excitonic channels, including bright and dark excitons, intravalley biexcitons, intervalley scattering between bright excitons, as well as bright biexcitons, we have performed a systematic study from the simplest system to the most complex one. In contrast to the binary WSe2 monolayer with weak photoluminescence (PL) and high valley polarization at low temperatures and the MoSe2, that presents high PL intensity, but low valley polarization, our results demonstrate that it is possible to set up a ternary alloy with intermediate W-concentration that holds simultaneously a considerably robust light emission and an efficient optical orientation of the valley pseudospin. We find the critical value of W-concentration, xc, that turns alloys from bright to darkish. The dependence of the PL intensity on temperature shows three regimes: while bright monolayer alloys display a usual temperature dependence in which the intensity decreases with rising temperature, the darkish alloys exhibit the opposite behavior, and the alloys with x around xc show a non-monotonic temperature response. Remarkably, we observe that the biexciton enhances significantly the stability of the exciton emission against fluctuations of W-concentration for bright alloys. Our findings pave the way for developing high-performance valleytronic and photo-emitting devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-40932-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4491761", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Dark-exciton valley dynamics in transition metal dichalcogenide alloy monolayers", 
        "pagination": "4575", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a698ac0a87d75945238cb32f05f12362fbdd45fb72fded9ad2f97b46adcadc4c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30872667"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-40932-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112765355"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-40932-9", 
          "https://app.dimensions.ai/details/publication/pub.1112765355"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78972_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-40932-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40932-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40932-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40932-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40932-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      21 PREDICATES      91 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-40932-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N7201741f5d6746a6b250fae9df8377ec
    4 schema:citation sg:pub.10.1038/ncomms10110
    5 sg:pub.10.1038/ncomms12715
    6 sg:pub.10.1038/ncomms13279
    7 sg:pub.10.1038/ncomms14670
    8 sg:pub.10.1038/ncomms15552
    9 sg:pub.10.1038/ncomms1882
    10 sg:pub.10.1038/nnano.2012.193
    11 sg:pub.10.1038/nnano.2013.151
    12 sg:pub.10.1038/nnano.2017.105
    13 sg:pub.10.1038/nphys3324
    14 sg:pub.10.1038/nphys3674
    15 sg:pub.10.1038/nphys3891
    16 sg:pub.10.1038/s41467-018-05863-5
    17 sg:pub.10.1038/s41467-018-05917-8
    18 sg:pub.10.1038/s41565-018-0281-1
    19 sg:pub.10.1038/s41598-017-00068-0
    20 sg:pub.10.1038/s41699-018-0074-2
    21 https://doi.org/10.1016/0038-1098(91)90761-j
    22 https://doi.org/10.1016/0038-1098(92)90121-o
    23 https://doi.org/10.1021/acs.nanolett.6b04171
    24 https://doi.org/10.1021/acs.nanolett.8b01484
    25 https://doi.org/10.1021/acsnano.5b05556
    26 https://doi.org/10.1021/nl503799t
    27 https://doi.org/10.1021/nl903868w
    28 https://doi.org/10.1021/nn303973r
    29 https://doi.org/10.1021/nn400280c
    30 https://doi.org/10.1021/nn401420h
    31 https://doi.org/10.1039/c5nr01536g
    32 https://doi.org/10.1039/c5nr05712d
    33 https://doi.org/10.1063/1.4768299
    34 https://doi.org/10.1063/1.4834358
    35 https://doi.org/10.1063/1.4895471
    36 https://doi.org/10.1063/1.4983285
    37 https://doi.org/10.1088/0034-4885/44/12/001
    38 https://doi.org/10.1088/1361-648x/aac61a
    39 https://doi.org/10.1088/1367-2630/aa6d39
    40 https://doi.org/10.1088/2053-1583/aa5521
    41 https://doi.org/10.1088/2053-1583/aa58a0
    42 https://doi.org/10.1088/2053-1583/aa70f9
    43 https://doi.org/10.1093/nsr/nwu078
    44 https://doi.org/10.1103/physrevb.45.8989
    45 https://doi.org/10.1103/physrevb.47.15776
    46 https://doi.org/10.1103/physrevb.84.153402
    47 https://doi.org/10.1103/physrevb.88.245436
    48 https://doi.org/10.1103/physrevb.89.205303
    49 https://doi.org/10.1103/physrevb.92.125431
    50 https://doi.org/10.1103/physrevb.93.045414
    51 https://doi.org/10.1103/physrevb.97.115425
    52 https://doi.org/10.1103/physrevb.98.195302
    53 https://doi.org/10.1103/physrevlett.105.136805
    54 https://doi.org/10.1103/physrevlett.115.176801
    55 https://doi.org/10.1103/physrevlett.115.257403
    56 https://doi.org/10.1103/physrevlett.116.127402
    57 https://doi.org/10.1103/physrevlett.117.187401
    58 https://doi.org/10.1103/physrevlett.119.127403
    59 https://doi.org/10.1103/physrevlett.121.057402
    60 https://doi.org/10.1103/physrevlett.90.257404
    61 https://doi.org/10.1103/physrevmaterials.2.014002
    62 https://doi.org/10.1103/physrevx.6.021024
    63 https://doi.org/10.1103/revmodphys.90.021001
    64 https://doi.org/10.1146/annurev-matsci-070214-021034
    65 https://doi.org/10.1364/josab.33.000c39
    66 schema:datePublished 2019-12
    67 schema:datePublishedReg 2019-12-01
    68 schema:description We report a comprehensive theory to describe exciton and biexciton valley dynamics in monolayer Mo<sub>1-x</sub>W<sub>x</sub>Se<sub>2</sub> alloys. To probe the impact of different excitonic channels, including bright and dark excitons, intravalley biexcitons, intervalley scattering between bright excitons, as well as bright biexcitons, we have performed a systematic study from the simplest system to the most complex one. In contrast to the binary WSe<sub>2</sub> monolayer with weak photoluminescence (PL) and high valley polarization at low temperatures and the MoSe<sub>2</sub>, that presents high PL intensity, but low valley polarization, our results demonstrate that it is possible to set up a ternary alloy with intermediate W-concentration that holds simultaneously a considerably robust light emission and an efficient optical orientation of the valley pseudospin. We find the critical value of W-concentration, x<sub>c</sub>, that turns alloys from bright to darkish. The dependence of the PL intensity on temperature shows three regimes: while bright monolayer alloys display a usual temperature dependence in which the intensity decreases with rising temperature, the darkish alloys exhibit the opposite behavior, and the alloys with x around x<sub>c</sub> show a non-monotonic temperature response. Remarkably, we observe that the biexciton enhances significantly the stability of the exciton emission against fluctuations of W-concentration for bright alloys. Our findings pave the way for developing high-performance valleytronic and photo-emitting devices.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree true
    72 schema:isPartOf N46d26fc01fc24583bfed37d29ed3d31d
    73 Na5175095b1a3401696c94d5641ed89ac
    74 sg:journal.1045337
    75 schema:name Dark-exciton valley dynamics in transition metal dichalcogenide alloy monolayers
    76 schema:pagination 4575
    77 schema:productId N0780608081754db999b2ec4ee7d713dc
    78 N76844b650d684c0caee4bf8bfab3a3c5
    79 Ne6bf7de7dd5245d194acecfc0796ef02
    80 Nea3bf0f4611342588127009b47ab59c0
    81 Nf3b9f3a28bc3402dbf7fb1e3abbf6013
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112765355
    83 https://doi.org/10.1038/s41598-019-40932-9
    84 schema:sdDatePublished 2019-04-11T13:21
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher N1728394da83d4c409e8564e03bea2954
    87 schema:url https://www.nature.com/articles/s41598-019-40932-9
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N0780608081754db999b2ec4ee7d713dc schema:name doi
    92 schema:value 10.1038/s41598-019-40932-9
    93 rdf:type schema:PropertyValue
    94 N1728394da83d4c409e8564e03bea2954 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 N269b2de46b74444989229e6d3aaab2e0 rdf:first Nb9f65dbaf78c4ae485a1a7dce6b64a90
    97 rdf:rest N532b7b48441143d4bfb8368f852a6c4d
    98 N46d26fc01fc24583bfed37d29ed3d31d schema:volumeNumber 9
    99 rdf:type schema:PublicationVolume
    100 N532b7b48441143d4bfb8368f852a6c4d rdf:first N6152bf33803a4e2f918f7b54d48e57fd
    101 rdf:rest rdf:nil
    102 N6152bf33803a4e2f918f7b54d48e57fd schema:affiliation https://www.grid.ac/institutes/grid.411247.5
    103 schema:familyName Marques
    104 schema:givenName Gilmar Eugenio
    105 rdf:type schema:Person
    106 N659561a3a2514280894772518a2eebe5 schema:name Instituto de Física, Universidade de Brasília, 70919-970, Brasília-DF, Brazil
    107 rdf:type schema:Organization
    108 N7201741f5d6746a6b250fae9df8377ec rdf:first Na4afb9e8b972485aa03ed3a2e8c85fe6
    109 rdf:rest Nb5d8e40e3781495ba0c32a8c7dea2b08
    110 N76844b650d684c0caee4bf8bfab3a3c5 schema:name nlm_unique_id
    111 schema:value 101563288
    112 rdf:type schema:PropertyValue
    113 N9b894695101d438a846216ad1f826e2d schema:affiliation N659561a3a2514280894772518a2eebe5
    114 schema:familyName Riche
    115 schema:givenName Flávio
    116 rdf:type schema:Person
    117 Na4afb9e8b972485aa03ed3a2e8c85fe6 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
    118 schema:familyName Bragança
    119 schema:givenName Helena
    120 rdf:type schema:Person
    121 Na5175095b1a3401696c94d5641ed89ac schema:issueNumber 1
    122 rdf:type schema:PublicationIssue
    123 Na80df19f428b472782d95c1ab4653ef0 schema:affiliation Ne122b369323d40b69d65599e2f47619e
    124 schema:familyName Qu
    125 schema:givenName Fanyao
    126 rdf:type schema:Person
    127 Nb22878c6b8ab4720bad5453ee98458c7 rdf:first Na80df19f428b472782d95c1ab4653ef0
    128 rdf:rest N269b2de46b74444989229e6d3aaab2e0
    129 Nb5d8e40e3781495ba0c32a8c7dea2b08 rdf:first N9b894695101d438a846216ad1f826e2d
    130 rdf:rest Nb22878c6b8ab4720bad5453ee98458c7
    131 Nb9f65dbaf78c4ae485a1a7dce6b64a90 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
    132 schema:familyName Lopez-Richard
    133 schema:givenName Victor
    134 rdf:type schema:Person
    135 Ne122b369323d40b69d65599e2f47619e schema:name Instituto de Física, Universidade de Brasília, 70919-970, Brasília-DF, Brazil
    136 rdf:type schema:Organization
    137 Ne6bf7de7dd5245d194acecfc0796ef02 schema:name readcube_id
    138 schema:value a698ac0a87d75945238cb32f05f12362fbdd45fb72fded9ad2f97b46adcadc4c
    139 rdf:type schema:PropertyValue
    140 Nea3bf0f4611342588127009b47ab59c0 schema:name pubmed_id
    141 schema:value 30872667
    142 rdf:type schema:PropertyValue
    143 Nf3b9f3a28bc3402dbf7fb1e3abbf6013 schema:name dimensions_id
    144 schema:value pub.1112765355
    145 rdf:type schema:PropertyValue
    146 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Engineering
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Materials Engineering
    151 rdf:type schema:DefinedTerm
    152 sg:grant.4491761 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40932-9
    153 rdf:type schema:MonetaryGrant
    154 sg:journal.1045337 schema:issn 2045-2322
    155 schema:name Scientific Reports
    156 rdf:type schema:Periodical
    157 sg:pub.10.1038/ncomms10110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035447357
    158 https://doi.org/10.1038/ncomms10110
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/ncomms12715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051055301
    161 https://doi.org/10.1038/ncomms12715
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/ncomms13279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028133339
    164 https://doi.org/10.1038/ncomms13279
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/ncomms14670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128898
    167 https://doi.org/10.1038/ncomms14670
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/ncomms15552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090275464
    170 https://doi.org/10.1038/ncomms15552
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
    173 https://doi.org/10.1038/ncomms1882
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
    176 https://doi.org/10.1038/nnano.2012.193
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nnano.2013.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857275
    179 https://doi.org/10.1038/nnano.2013.151
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nnano.2017.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086182729
    182 https://doi.org/10.1038/nnano.2017.105
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nphys3324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037682572
    185 https://doi.org/10.1038/nphys3324
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nphys3674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041358474
    188 https://doi.org/10.1038/nphys3674
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nphys3891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030701671
    191 https://doi.org/10.1038/nphys3891
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/s41467-018-05863-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858937
    194 https://doi.org/10.1038/s41467-018-05863-5
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/s41467-018-05917-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858938
    197 https://doi.org/10.1038/s41467-018-05917-8
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/s41565-018-0281-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107298743
    200 https://doi.org/10.1038/s41565-018-0281-1
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/s41598-017-00068-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130217
    203 https://doi.org/10.1038/s41598-017-00068-0
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/s41699-018-0074-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106088209
    206 https://doi.org/10.1038/s41699-018-0074-2
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/0038-1098(91)90761-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1003639384
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/0038-1098(92)90121-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1016679769
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1021/acs.nanolett.6b04171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121959
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1021/acs.nanolett.8b01484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104150279
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1021/acsnano.5b05556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041402413
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1021/nl503799t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221072
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1021/nn303973r schema:sameAs https://app.dimensions.ai/details/publication/pub.1007589356
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1021/nn400280c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038090434
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1021/nn401420h schema:sameAs https://app.dimensions.ai/details/publication/pub.1012629281
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1039/c5nr01536g schema:sameAs https://app.dimensions.ai/details/publication/pub.1034721653
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1039/c5nr05712d schema:sameAs https://app.dimensions.ai/details/publication/pub.1038078656
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1063/1.4768299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064022
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1063/1.4834358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019908774
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1063/1.4895471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013958634
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1063/1.4983285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085370389
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1088/0034-4885/44/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021893018
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1088/1361-648x/aac61a schema:sameAs https://app.dimensions.ai/details/publication/pub.1104164600
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1088/1367-2630/aa6d39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090708028
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1088/2053-1583/aa5521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003303304
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1088/2053-1583/aa58a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059182986
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1088/2053-1583/aa70f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085330061
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/nsr/nwu078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033118741
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1103/physrevb.45.8989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562272
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1103/physrevb.47.15776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565543
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1103/physrevb.84.153402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004102128
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1103/physrevb.88.245436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011676895
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1103/physrevb.89.205303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042460651
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1103/physrevb.92.125431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647263
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1103/physrevb.93.045414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648811
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1103/physrevb.97.115425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101640429
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1103/physrevb.98.195302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109806596
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1103/physrevlett.115.176801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764314
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1103/physrevlett.115.257403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764679
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1103/physrevlett.116.127402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765259
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1103/physrevlett.117.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021994102
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1103/physrevlett.119.127403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091952670
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1103/physrevlett.121.057402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105983633
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1103/physrevlett.90.257404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826909
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1103/physrevmaterials.2.014002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100502502
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1103/physrevx.6.021024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052486939
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1103/revmodphys.90.021001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103306737
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1146/annurev-matsci-070214-021034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038935153
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1364/josab.33.000c39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065176119
    297 rdf:type schema:CreativeWork
    298 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
    299 schema:name Departamento de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
    300 Instituto de Física, Universidade de Brasília, 70919-970, Brasília-DF, Brazil
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...