Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Devin A Gredell, Amelia R Schroeder, Keith E Belk, Corey D Broeckling, Adam L Heuberger, Soo-Young Kim, D Andy King, Steven D Shackelford, Julia L Sharp, Tommy L Wheeler, Dale R Woerner, Jessica E Prenni

ABSTRACT

Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a "one size fits all" approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5-99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef. More... »

PAGES

5721

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6

DOI

http://dx.doi.org/10.1038/s41598-019-40927-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113261518

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30952873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gredell", 
        "givenName": "Devin A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East Tennessee State University", 
          "id": "https://www.grid.ac/institutes/grid.255381.8", 
          "name": [
            "Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN, 37614, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroeder", 
        "givenName": "Amelia R", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belk", 
        "givenName": "Keith E", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broeckling", 
        "givenName": "Corey D", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heuberger", 
        "givenName": "Adam L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Soo-Young", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "D Andy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shackelford", 
        "givenName": "Steven D", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharp", 
        "givenName": "Julia L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wheeler", 
        "givenName": "Tommy L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woerner", 
        "givenName": "Dale R", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA. jprenni@colostate.edu."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prenni", 
        "givenName": "Jessica E", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/anie.200902546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000871388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200902546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000871388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001327449", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6849-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001327449", 
          "https://doi.org/10.1007/978-1-4614-6849-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6849-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001327449", 
          "https://doi.org/10.1007/978-1-4614-6849-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006422849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2015.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012947261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1471-0528.14447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013813651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017879909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1016218223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020629296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b925579f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035600204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b925579f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035600204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2014.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036563763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11694-008-9051-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045450456", 
          "https://doi.org/10.1007/s11694-008-9051-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2015.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049253896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-14-91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049507305", 
          "https://doi.org/10.1186/1471-2288-14-91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3578-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783609", 
          "https://doi.org/10.1007/978-1-4939-3578-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jafc.6b01041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055096032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3005623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062687861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1538-7445.sabcs15-p2-12-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063275189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v028.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1997.7561521x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070879990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1998.7682115x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070880472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1999.77102693x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070880538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2001.79123062x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2001.793688x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2002.80123315x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2003.812457x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070882334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2005.834890x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070883169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-003-0921-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075243731", 
          "https://doi.org/10.1007/s00439-003-0921-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-003-0921-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075243731", 
          "https://doi.org/10.1007/s00439-003-0921-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/neuonc/now212.831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083583621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2017.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084110173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-017-1291-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092500987", 
          "https://doi.org/10.1007/s11306-017-1291-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19440049.2017.1421778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100087403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2018.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100234153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2018.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100234153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2018.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100234153"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a \"one size fits all\" approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5-99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40927-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data.", 
    "pagination": "5721", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40927-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113261518"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30952873"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40927-6", 
      "https://app.dimensions.ai/details/publication/pub.1113261518"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56193_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41598-019-40927-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      60 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40927-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb4b0cd0570f949f0972859fa76c1d295
4 schema:citation sg:pub.10.1007/978-1-4614-6849-3
5 sg:pub.10.1007/978-1-4939-3578-9_17
6 sg:pub.10.1007/s00439-003-0921-9
7 sg:pub.10.1007/s11306-017-1291-y
8 sg:pub.10.1007/s11694-008-9051-3
9 sg:pub.10.1186/1471-2288-14-91
10 https://app.dimensions.ai/details/publication/pub.1001327449
11 https://doi.org/10.1002/anie.200902546
12 https://doi.org/10.1016/j.aca.2014.03.039
13 https://doi.org/10.1016/j.aca.2015.02.012
14 https://doi.org/10.1016/j.infrared.2018.01.005
15 https://doi.org/10.1016/j.jfoodeng.2015.09.001
16 https://doi.org/10.1016/j.talanta.2017.03.056
17 https://doi.org/10.1016/j.trac.2016.06.005
18 https://doi.org/10.1021/acs.jafc.6b01041
19 https://doi.org/10.1039/b925579f
20 https://doi.org/10.1080/19440049.2017.1421778
21 https://doi.org/10.1093/neuonc/now212.831
22 https://doi.org/10.1111/1471-0528.14447
23 https://doi.org/10.1126/science.1104404
24 https://doi.org/10.1126/scitranslmed.3005623
25 https://doi.org/10.1158/1538-7445.sabcs15-p2-12-20
26 https://doi.org/10.1214/aos/1016218223
27 https://doi.org/10.18637/jss.v028.i05
28 https://doi.org/10.2527/1997.7561521x
29 https://doi.org/10.2527/1998.7682115x
30 https://doi.org/10.2527/1999.77102693x
31 https://doi.org/10.2527/2001.79123062x
32 https://doi.org/10.2527/2001.793688x
33 https://doi.org/10.2527/2002.80123315x
34 https://doi.org/10.2527/2003.812457x
35 https://doi.org/10.2527/2005.834890x
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a "one size fits all" approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5-99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N569efe5395f14791aee415577b57944f
43 N6b2bba32ad72418bb15c0268c92fe8e6
44 sg:journal.1045337
45 schema:name Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data.
46 schema:pagination 5721
47 schema:productId N1b35d73c888f402f8ac4054b8922e6b2
48 N2f06665ed21340f09d2c4b8460f35331
49 N668ff8e71d7d47b49d182c66a1aa915e
50 Nd6c1ceb466064493a48ca5f1199c08c2
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261518
52 https://doi.org/10.1038/s41598-019-40927-6
53 schema:sdDatePublished 2019-04-15T09:27
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N72ab7f40b5d1487d90f29cc4813c30c8
56 schema:url http://www.nature.com/articles/s41598-019-40927-6
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0152560b845a498ab66cc733821b9ef3 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
61 schema:familyName Woerner
62 schema:givenName Dale R
63 rdf:type schema:Person
64 N0274c7de2c7d46f4b472e86897af77f1 rdf:first N74ae260642dc4dd5bf5885a70e2ccbde
65 rdf:rest N3bef8f92908340598b54f7ba4598e152
66 N0878ca1db24347f29cc0462f456c5a3a schema:affiliation https://www.grid.ac/institutes/grid.47894.36
67 schema:familyName Broeckling
68 schema:givenName Corey D
69 rdf:type schema:Person
70 N0d154763f71a419dae15e64e973669dd schema:affiliation https://www.grid.ac/institutes/grid.47894.36
71 schema:familyName Sharp
72 schema:givenName Julia L
73 rdf:type schema:Person
74 N1b35d73c888f402f8ac4054b8922e6b2 schema:name pubmed_id
75 schema:value 30952873
76 rdf:type schema:PropertyValue
77 N1e3927697822415483ebb31f668b1ec4 rdf:first N4ff910f9a02f46d5b6015329d47eca25
78 rdf:rest Nc3edbf0758484165a848b22f39b64e05
79 N20c78f63b99c4cf78ad552492486260c schema:affiliation https://www.grid.ac/institutes/grid.47894.36
80 schema:familyName Prenni
81 schema:givenName Jessica E
82 rdf:type schema:Person
83 N2368293278234b2a86f571c1b9d1650a rdf:first Nc8a700a5dd2c4983a9f47486771c1ce5
84 rdf:rest N3a19bc5d6430470db67efddc06c812ac
85 N2f06665ed21340f09d2c4b8460f35331 schema:name dimensions_id
86 schema:value pub.1113261518
87 rdf:type schema:PropertyValue
88 N3a19bc5d6430470db67efddc06c812ac rdf:first Na4c88ca4d6224807ada363de715743ff
89 rdf:rest Nb6678f1b73a8419f9f09e5a6a60c8f91
90 N3bef8f92908340598b54f7ba4598e152 rdf:first N0d154763f71a419dae15e64e973669dd
91 rdf:rest N1e3927697822415483ebb31f668b1ec4
92 N4ff910f9a02f46d5b6015329d47eca25 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
93 schema:familyName Wheeler
94 schema:givenName Tommy L
95 rdf:type schema:Person
96 N569efe5395f14791aee415577b57944f schema:volumeNumber 9
97 rdf:type schema:PublicationVolume
98 N5b58497dbe744bc7a24c4c89dd29ecec schema:affiliation https://www.grid.ac/institutes/grid.255381.8
99 schema:familyName Schroeder
100 schema:givenName Amelia R
101 rdf:type schema:Person
102 N668ff8e71d7d47b49d182c66a1aa915e schema:name nlm_unique_id
103 schema:value 101563288
104 rdf:type schema:PropertyValue
105 N6b2bba32ad72418bb15c0268c92fe8e6 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N72ab7f40b5d1487d90f29cc4813c30c8 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N74ae260642dc4dd5bf5885a70e2ccbde schema:affiliation https://www.grid.ac/institutes/grid.463419.d
110 schema:familyName Shackelford
111 schema:givenName Steven D
112 rdf:type schema:Person
113 N99d38839cf0e4f19bf6a3387c44655fa schema:affiliation https://www.grid.ac/institutes/grid.463419.d
114 schema:familyName King
115 schema:givenName D Andy
116 rdf:type schema:Person
117 Na4c88ca4d6224807ada363de715743ff schema:affiliation https://www.grid.ac/institutes/grid.47894.36
118 schema:familyName Kim
119 schema:givenName Soo-Young
120 rdf:type schema:Person
121 Na9327fbf2637432583d346f1d4cff31f rdf:first N20c78f63b99c4cf78ad552492486260c
122 rdf:rest rdf:nil
123 Nb4b0cd0570f949f0972859fa76c1d295 rdf:first Nef627c5f19fd4c9f8017b6e46998d29e
124 rdf:rest Nd1813ca2e6c2459d9b476ad92e77995a
125 Nb5eb2b9ba56d48a5bc1948093383046b rdf:first N0878ca1db24347f29cc0462f456c5a3a
126 rdf:rest N2368293278234b2a86f571c1b9d1650a
127 Nb6678f1b73a8419f9f09e5a6a60c8f91 rdf:first N99d38839cf0e4f19bf6a3387c44655fa
128 rdf:rest N0274c7de2c7d46f4b472e86897af77f1
129 Nb9089b0c3e75463fa235d519d1251803 rdf:first Nf566f48320da4b46be5c825a686873ad
130 rdf:rest Nb5eb2b9ba56d48a5bc1948093383046b
131 Nc3edbf0758484165a848b22f39b64e05 rdf:first N0152560b845a498ab66cc733821b9ef3
132 rdf:rest Na9327fbf2637432583d346f1d4cff31f
133 Nc8a700a5dd2c4983a9f47486771c1ce5 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
134 schema:familyName Heuberger
135 schema:givenName Adam L
136 rdf:type schema:Person
137 Nd1813ca2e6c2459d9b476ad92e77995a rdf:first N5b58497dbe744bc7a24c4c89dd29ecec
138 rdf:rest Nb9089b0c3e75463fa235d519d1251803
139 Nd6c1ceb466064493a48ca5f1199c08c2 schema:name doi
140 schema:value 10.1038/s41598-019-40927-6
141 rdf:type schema:PropertyValue
142 Nef627c5f19fd4c9f8017b6e46998d29e schema:affiliation https://www.grid.ac/institutes/grid.47894.36
143 schema:familyName Gredell
144 schema:givenName Devin A
145 rdf:type schema:Person
146 Nf566f48320da4b46be5c825a686873ad schema:affiliation https://www.grid.ac/institutes/grid.47894.36
147 schema:familyName Belk
148 schema:givenName Keith E
149 rdf:type schema:Person
150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information and Computing Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
154 schema:name Artificial Intelligence and Image Processing
155 rdf:type schema:DefinedTerm
156 sg:journal.1045337 schema:issn 2045-2322
157 schema:name Scientific Reports
158 rdf:type schema:Periodical
159 sg:pub.10.1007/978-1-4614-6849-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001327449
160 https://doi.org/10.1007/978-1-4614-6849-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-1-4939-3578-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049783609
163 https://doi.org/10.1007/978-1-4939-3578-9_17
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00439-003-0921-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075243731
166 https://doi.org/10.1007/s00439-003-0921-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11306-017-1291-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092500987
169 https://doi.org/10.1007/s11306-017-1291-y
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11694-008-9051-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045450456
172 https://doi.org/10.1007/s11694-008-9051-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2288-14-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049507305
175 https://doi.org/10.1186/1471-2288-14-91
176 rdf:type schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1001327449 schema:CreativeWork
178 https://doi.org/10.1002/anie.200902546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000871388
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.aca.2014.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036563763
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.aca.2015.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049253896
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.infrared.2018.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100234153
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jfoodeng.2015.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012947261
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.talanta.2017.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084110173
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.trac.2016.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017879909
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/acs.jafc.6b01041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055096032
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/b925579f schema:sameAs https://app.dimensions.ai/details/publication/pub.1035600204
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/19440049.2017.1421778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100087403
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/neuonc/now212.831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083583621
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/1471-0528.14447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013813651
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1104404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006422849
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/scitranslmed.3005623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062687861
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1158/1538-7445.sabcs15-p2-12-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063275189
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1214/aos/1016218223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020629296
209 rdf:type schema:CreativeWork
210 https://doi.org/10.18637/jss.v028.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672403
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2527/1997.7561521x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070879990
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2527/1998.7682115x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070880472
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2527/1999.77102693x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070880538
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2527/2001.79123062x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881480
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2527/2001.793688x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881560
221 rdf:type schema:CreativeWork
222 https://doi.org/10.2527/2002.80123315x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881888
223 rdf:type schema:CreativeWork
224 https://doi.org/10.2527/2003.812457x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070882334
225 rdf:type schema:CreativeWork
226 https://doi.org/10.2527/2005.834890x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883169
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.255381.8 schema:alternateName East Tennessee State University
229 schema:name Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN, 37614, USA.
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
232 schema:name USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
235 schema:name Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
236 Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
237 Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA. jprenni@colostate.edu.
238 Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA.
239 Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA.
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...