Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Devin A Gredell, Amelia R Schroeder, Keith E Belk, Corey D Broeckling, Adam L Heuberger, Soo-Young Kim, D Andy King, Steven D Shackelford, Julia L Sharp, Tommy L Wheeler, Dale R Woerner, Jessica E Prenni

ABSTRACT

Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a "one size fits all" approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5-99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef. More... »

PAGES

5721

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6

DOI

http://dx.doi.org/10.1038/s41598-019-40927-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113261518

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30952873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gredell", 
        "givenName": "Devin A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East Tennessee State University", 
          "id": "https://www.grid.ac/institutes/grid.255381.8", 
          "name": [
            "Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN, 37614, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroeder", 
        "givenName": "Amelia R", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belk", 
        "givenName": "Keith E", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broeckling", 
        "givenName": "Corey D", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heuberger", 
        "givenName": "Adam L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Soo-Young", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "D Andy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shackelford", 
        "givenName": "Steven D", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharp", 
        "givenName": "Julia L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wheeler", 
        "givenName": "Tommy L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woerner", 
        "givenName": "Dale R", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA. jprenni@colostate.edu."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prenni", 
        "givenName": "Jessica E", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/anie.200902546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000871388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200902546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000871388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001327449", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6849-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001327449", 
          "https://doi.org/10.1007/978-1-4614-6849-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6849-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001327449", 
          "https://doi.org/10.1007/978-1-4614-6849-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006422849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2015.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012947261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1471-0528.14447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013813651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017879909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1016218223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020629296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b925579f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035600204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b925579f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035600204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2014.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036563763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11694-008-9051-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045450456", 
          "https://doi.org/10.1007/s11694-008-9051-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2015.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049253896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-14-91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049507305", 
          "https://doi.org/10.1186/1471-2288-14-91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3578-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783609", 
          "https://doi.org/10.1007/978-1-4939-3578-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jafc.6b01041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055096032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3005623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062687861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1538-7445.sabcs15-p2-12-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063275189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v028.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1997.7561521x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070879990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1998.7682115x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070880472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/1999.77102693x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070880538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2001.79123062x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2001.793688x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2002.80123315x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2003.812457x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070882334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2005.834890x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070883169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-003-0921-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075243731", 
          "https://doi.org/10.1007/s00439-003-0921-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-003-0921-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075243731", 
          "https://doi.org/10.1007/s00439-003-0921-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/neuonc/now212.831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083583621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2017.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084110173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-017-1291-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092500987", 
          "https://doi.org/10.1007/s11306-017-1291-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19440049.2017.1421778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100087403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2018.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100234153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2018.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100234153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2018.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100234153"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a \"one size fits all\" approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5-99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40927-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data.", 
    "pagination": "5721", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40927-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113261518"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30952873"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40927-6", 
      "https://app.dimensions.ai/details/publication/pub.1113261518"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56193_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41598-019-40927-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40927-6'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      60 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40927-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na1f94bcc8b474573b6e37fc8a7917ae3
4 schema:citation sg:pub.10.1007/978-1-4614-6849-3
5 sg:pub.10.1007/978-1-4939-3578-9_17
6 sg:pub.10.1007/s00439-003-0921-9
7 sg:pub.10.1007/s11306-017-1291-y
8 sg:pub.10.1007/s11694-008-9051-3
9 sg:pub.10.1186/1471-2288-14-91
10 https://app.dimensions.ai/details/publication/pub.1001327449
11 https://doi.org/10.1002/anie.200902546
12 https://doi.org/10.1016/j.aca.2014.03.039
13 https://doi.org/10.1016/j.aca.2015.02.012
14 https://doi.org/10.1016/j.infrared.2018.01.005
15 https://doi.org/10.1016/j.jfoodeng.2015.09.001
16 https://doi.org/10.1016/j.talanta.2017.03.056
17 https://doi.org/10.1016/j.trac.2016.06.005
18 https://doi.org/10.1021/acs.jafc.6b01041
19 https://doi.org/10.1039/b925579f
20 https://doi.org/10.1080/19440049.2017.1421778
21 https://doi.org/10.1093/neuonc/now212.831
22 https://doi.org/10.1111/1471-0528.14447
23 https://doi.org/10.1126/science.1104404
24 https://doi.org/10.1126/scitranslmed.3005623
25 https://doi.org/10.1158/1538-7445.sabcs15-p2-12-20
26 https://doi.org/10.1214/aos/1016218223
27 https://doi.org/10.18637/jss.v028.i05
28 https://doi.org/10.2527/1997.7561521x
29 https://doi.org/10.2527/1998.7682115x
30 https://doi.org/10.2527/1999.77102693x
31 https://doi.org/10.2527/2001.79123062x
32 https://doi.org/10.2527/2001.793688x
33 https://doi.org/10.2527/2002.80123315x
34 https://doi.org/10.2527/2003.812457x
35 https://doi.org/10.2527/2005.834890x
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a "one size fits all" approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5-99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N2afe461eec68457c89bc4879fa37f07f
43 N2cd1b376a2e94fcf8fc2ebc1f742a686
44 sg:journal.1045337
45 schema:name Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data.
46 schema:pagination 5721
47 schema:productId N5fcf4f2e8af74783b98a5daf274c1657
48 N62c636e39ca844e7bbadb3516e4e98cb
49 N7cbc8b271c95458fa9ddb118479470ff
50 N97d74c76688f41b39e785201ebd81366
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261518
52 https://doi.org/10.1038/s41598-019-40927-6
53 schema:sdDatePublished 2019-04-15T09:27
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N744e8713dd514f42ad21a2f5c578f192
56 schema:url http://www.nature.com/articles/s41598-019-40927-6
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N014ff45740f64949bb367560c99d897c rdf:first N6eeb659bcc64468881a6dc05b74c2792
61 rdf:rest Ncd54116af1424da69d93a4ac3332b8e6
62 N150591b7274d4951aaffd73b84e9e2e5 rdf:first N6d27e528c007476ca48b23890fc523e1
63 rdf:rest Na1ce37637a104ef1a5c7414c6f324cbe
64 N1e801a33b42d4bc5acb159635dc788a9 rdf:first N45ec4952b0ed44148d9c3cbc4fbf338e
65 rdf:rest Nf467900b2eba4166adbf40c18fb27c05
66 N2663a8f3fb06482d946caba665e24328 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
67 schema:familyName Shackelford
68 schema:givenName Steven D
69 rdf:type schema:Person
70 N2afe461eec68457c89bc4879fa37f07f schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N2cd1b376a2e94fcf8fc2ebc1f742a686 schema:volumeNumber 9
73 rdf:type schema:PublicationVolume
74 N3010fb050546444d9471edebc36f2b5f schema:affiliation https://www.grid.ac/institutes/grid.47894.36
75 schema:familyName Woerner
76 schema:givenName Dale R
77 rdf:type schema:Person
78 N3942888918c348bc9666c8ddf2f35ad9 rdf:first Ne4c4715cd2b24505be4d12432536a8b4
79 rdf:rest N150591b7274d4951aaffd73b84e9e2e5
80 N442d683b32ed4153996458d82e0dfe05 rdf:first N2663a8f3fb06482d946caba665e24328
81 rdf:rest N014ff45740f64949bb367560c99d897c
82 N45ec4952b0ed44148d9c3cbc4fbf338e schema:affiliation https://www.grid.ac/institutes/grid.255381.8
83 schema:familyName Schroeder
84 schema:givenName Amelia R
85 rdf:type schema:Person
86 N597d00bf4b7a469d8b657a41531ac135 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
87 schema:familyName Kim
88 schema:givenName Soo-Young
89 rdf:type schema:Person
90 N5fcf4f2e8af74783b98a5daf274c1657 schema:name dimensions_id
91 schema:value pub.1113261518
92 rdf:type schema:PropertyValue
93 N62c636e39ca844e7bbadb3516e4e98cb schema:name doi
94 schema:value 10.1038/s41598-019-40927-6
95 rdf:type schema:PropertyValue
96 N6d27e528c007476ca48b23890fc523e1 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
97 schema:familyName Heuberger
98 schema:givenName Adam L
99 rdf:type schema:Person
100 N6eeb659bcc64468881a6dc05b74c2792 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
101 schema:familyName Sharp
102 schema:givenName Julia L
103 rdf:type schema:Person
104 N744e8713dd514f42ad21a2f5c578f192 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N7464c1e8a24749bcaa664209c86c0bba rdf:first N3010fb050546444d9471edebc36f2b5f
107 rdf:rest Nd426947a66ba42e6b21d097df1c45f6e
108 N7cbc8b271c95458fa9ddb118479470ff schema:name nlm_unique_id
109 schema:value 101563288
110 rdf:type schema:PropertyValue
111 N8f07522bb8914df6b28d841293188b33 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
112 schema:familyName Belk
113 schema:givenName Keith E
114 rdf:type schema:Person
115 N91bc6f3efcde410e9194fca9005dfdf1 rdf:first Nbe8f3249950a4acfaad2d34f9a576e38
116 rdf:rest N442d683b32ed4153996458d82e0dfe05
117 N96bf14514f244e7d9eb9520b41e7f8d0 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
118 schema:familyName Wheeler
119 schema:givenName Tommy L
120 rdf:type schema:Person
121 N97d74c76688f41b39e785201ebd81366 schema:name pubmed_id
122 schema:value 30952873
123 rdf:type schema:PropertyValue
124 Na1ce37637a104ef1a5c7414c6f324cbe rdf:first N597d00bf4b7a469d8b657a41531ac135
125 rdf:rest N91bc6f3efcde410e9194fca9005dfdf1
126 Na1f94bcc8b474573b6e37fc8a7917ae3 rdf:first Nbc817bfa04d94ba9bc9eb1a4e730e38a
127 rdf:rest N1e801a33b42d4bc5acb159635dc788a9
128 Naa2f476d77104476a40ecff59af8fa06 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
129 schema:familyName Prenni
130 schema:givenName Jessica E
131 rdf:type schema:Person
132 Nbc817bfa04d94ba9bc9eb1a4e730e38a schema:affiliation https://www.grid.ac/institutes/grid.47894.36
133 schema:familyName Gredell
134 schema:givenName Devin A
135 rdf:type schema:Person
136 Nbe8f3249950a4acfaad2d34f9a576e38 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
137 schema:familyName King
138 schema:givenName D Andy
139 rdf:type schema:Person
140 Ncd54116af1424da69d93a4ac3332b8e6 rdf:first N96bf14514f244e7d9eb9520b41e7f8d0
141 rdf:rest N7464c1e8a24749bcaa664209c86c0bba
142 Nd426947a66ba42e6b21d097df1c45f6e rdf:first Naa2f476d77104476a40ecff59af8fa06
143 rdf:rest rdf:nil
144 Ne4c4715cd2b24505be4d12432536a8b4 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
145 schema:familyName Broeckling
146 schema:givenName Corey D
147 rdf:type schema:Person
148 Nf467900b2eba4166adbf40c18fb27c05 rdf:first N8f07522bb8914df6b28d841293188b33
149 rdf:rest N3942888918c348bc9666c8ddf2f35ad9
150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information and Computing Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
154 schema:name Artificial Intelligence and Image Processing
155 rdf:type schema:DefinedTerm
156 sg:journal.1045337 schema:issn 2045-2322
157 schema:name Scientific Reports
158 rdf:type schema:Periodical
159 sg:pub.10.1007/978-1-4614-6849-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001327449
160 https://doi.org/10.1007/978-1-4614-6849-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-1-4939-3578-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049783609
163 https://doi.org/10.1007/978-1-4939-3578-9_17
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00439-003-0921-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075243731
166 https://doi.org/10.1007/s00439-003-0921-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11306-017-1291-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092500987
169 https://doi.org/10.1007/s11306-017-1291-y
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11694-008-9051-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045450456
172 https://doi.org/10.1007/s11694-008-9051-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2288-14-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049507305
175 https://doi.org/10.1186/1471-2288-14-91
176 rdf:type schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1001327449 schema:CreativeWork
178 https://doi.org/10.1002/anie.200902546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000871388
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.aca.2014.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036563763
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.aca.2015.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049253896
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.infrared.2018.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100234153
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jfoodeng.2015.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012947261
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.talanta.2017.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084110173
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.trac.2016.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017879909
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/acs.jafc.6b01041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055096032
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/b925579f schema:sameAs https://app.dimensions.ai/details/publication/pub.1035600204
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/19440049.2017.1421778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100087403
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/neuonc/now212.831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083583621
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/1471-0528.14447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013813651
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1104404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006422849
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/scitranslmed.3005623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062687861
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1158/1538-7445.sabcs15-p2-12-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063275189
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1214/aos/1016218223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020629296
209 rdf:type schema:CreativeWork
210 https://doi.org/10.18637/jss.v028.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672403
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2527/1997.7561521x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070879990
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2527/1998.7682115x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070880472
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2527/1999.77102693x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070880538
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2527/2001.79123062x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881480
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2527/2001.793688x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881560
221 rdf:type schema:CreativeWork
222 https://doi.org/10.2527/2002.80123315x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881888
223 rdf:type schema:CreativeWork
224 https://doi.org/10.2527/2003.812457x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070882334
225 rdf:type schema:CreativeWork
226 https://doi.org/10.2527/2005.834890x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883169
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.255381.8 schema:alternateName East Tennessee State University
229 schema:name Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN, 37614, USA.
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
232 schema:name USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
235 schema:name Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
236 Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
237 Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA. jprenni@colostate.edu.
238 Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA.
239 Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA.
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...