Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Meng Liu, Quan Xu, Xieyu Chen, Eric Plum, Hua Li, Xueqian Zhang, Caihong Zhang, Chongwen Zou, Jiaguang Han, Weili Zhang

ABSTRACT

Chiral materials can exhibit different levels of transmission for opposite propagation directions of the same electromagnetic wave. Here we demonstrate thermal switching of asymmetric transmission of linearly polarized terahertz waves. The effect is observed in a terahertz metamaterial containing 3D-chiral metallic inclusions and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced asymmetric transmission at room temperature when vanadium dioxide is in its insulator phase. As the metamaterial is heated, the insulator-to-metal phase transition of vanadium dioxide effectively renders the structure achiral and the transmission asymmetry vanishes. We demonstrate the effect numerically and experimentally, describe it analytically and explain the underlying physical mechanism based on simulated surface current distributions. Potential applications include directionally asymmetric active devices as well as intensity and polarization modulators for electromagnetic waves. More... »

PAGES

4097

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40791-4

DOI

http://dx.doi.org/10.1038/s41598-019-40791-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112674653

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30858496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Meng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Quan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xieyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "Centre for Photonic Metamaterials & Optoelectronics Research Centre, Zepler Institute, University of Southampton, SO17 1BJ, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plum", 
        "givenName": "Eric", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Research Institute of Superconductor Electronics, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xueqian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Research Institute of Superconductor Electronics, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Caihong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Chongwen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Jiaguang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oklahoma State University", 
          "id": "https://www.grid.ac/institutes/grid.65519.3e", 
          "name": [
            "Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China", 
            "School of Electrical and Computer Engineering, Oklahoma State University, 74078, Stillwater, Oklahoma, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Weili", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/nl4044482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000054952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.153104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001722107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.153104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001722107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010610730", 
          "https://doi.org/10.1038/srep08977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010629098", 
          "https://doi.org/10.1038/nphoton.2013.185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3429683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011161256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.053811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013874390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.053811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013874390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.167401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016242286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.167401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016242286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep23186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097840", 
          "https://doi.org/10.1038/srep23186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3109780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028419338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.253902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030190696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.253902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030190696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.177401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.177401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038705672", 
          "https://doi.org/10.1038/ncomms2285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8978/13/2/024006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039296147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8978/13/2/024006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039296147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.013425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042901603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.013425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042901603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/67/5/r03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044305221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045070059", 
          "https://doi.org/10.1038/ncomms1908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3580608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047114345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1342210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3463466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057956088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.350285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057963712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3682591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058000044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4819017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058081377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/79/7/076401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059033822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.165128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060643226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.165128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060643226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.213905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.213905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.063908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.063908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.29.002373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065174228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.000856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.34.003000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065227727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.001626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065230131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/fio.2010.fwo6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099035913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201701204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101238633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0024-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105156388", 
          "https://doi.org/10.1038/s41377-018-0024-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0024-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105156388", 
          "https://doi.org/10.1038/s41377-018-0024-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0024-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105156388", 
          "https://doi.org/10.1038/s41377-018-0024-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0024-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105156388", 
          "https://doi.org/10.1038/s41377-018-0024-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Chiral materials can exhibit different levels of transmission for opposite propagation directions of the same electromagnetic wave. Here we demonstrate thermal switching of asymmetric transmission of linearly polarized terahertz waves. The effect is observed in a terahertz metamaterial containing 3D-chiral metallic inclusions and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced asymmetric transmission at room temperature when vanadium dioxide is in its insulator phase. As the metamaterial is heated, the insulator-to-metal phase transition of vanadium dioxide effectively renders the structure achiral and the transmission asymmetry vanishes. We demonstrate the effect numerically and experimentally, describe it analytically and explain the underlying physical mechanism based on simulated surface current distributions. Potential applications include directionally asymmetric active devices as well as intensity and polarization modulators for electromagnetic waves.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40791-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3957707", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves", 
    "pagination": "4097", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "191cfb12ed86ff654286dcebfd8284165c0d568e03f0d4f4a6128aa502a22569"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30858496"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40791-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112674653"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40791-4", 
      "https://app.dimensions.ai/details/publication/pub.1112674653"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78972_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40791-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40791-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40791-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40791-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40791-4'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40791-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3d875b2bde264c4cad5949abc668fc08
4 schema:citation sg:pub.10.1038/ncomms1908
5 sg:pub.10.1038/ncomms2285
6 sg:pub.10.1038/nphoton.2013.185
7 sg:pub.10.1038/s41377-018-0024-y
8 sg:pub.10.1038/srep08977
9 sg:pub.10.1038/srep23186
10 https://doi.org/10.1002/adom.201701204
11 https://doi.org/10.1021/nl4044482
12 https://doi.org/10.1063/1.1342210
13 https://doi.org/10.1063/1.3109780
14 https://doi.org/10.1063/1.3429683
15 https://doi.org/10.1063/1.3463466
16 https://doi.org/10.1063/1.350285
17 https://doi.org/10.1063/1.3580608
18 https://doi.org/10.1063/1.3682591
19 https://doi.org/10.1063/1.4819017
20 https://doi.org/10.1088/0034-4885/67/5/r03
21 https://doi.org/10.1088/0034-4885/79/7/076401
22 https://doi.org/10.1088/2040-8978/13/2/024006
23 https://doi.org/10.1103/physreva.82.053811
24 https://doi.org/10.1103/physrevb.80.153104
25 https://doi.org/10.1103/physrevb.85.195131
26 https://doi.org/10.1103/physrevb.86.035448
27 https://doi.org/10.1103/physrevb.89.165128
28 https://doi.org/10.1103/physrevlett.104.253902
29 https://doi.org/10.1103/physrevlett.108.213905
30 https://doi.org/10.1103/physrevlett.97.167401
31 https://doi.org/10.1103/physrevlett.97.177401
32 https://doi.org/10.1103/physrevlett.99.063908
33 https://doi.org/10.1364/fio.2010.fwo6
34 https://doi.org/10.1364/josab.29.002373
35 https://doi.org/10.1364/oe.18.013425
36 https://doi.org/10.1364/ol.32.000856
37 https://doi.org/10.1364/ol.34.003000
38 https://doi.org/10.1364/ol.36.001626
39 schema:datePublished 2019-12
40 schema:datePublishedReg 2019-12-01
41 schema:description Chiral materials can exhibit different levels of transmission for opposite propagation directions of the same electromagnetic wave. Here we demonstrate thermal switching of asymmetric transmission of linearly polarized terahertz waves. The effect is observed in a terahertz metamaterial containing 3D-chiral metallic inclusions and achiral vanadium dioxide inclusions. The chiral structure exhibits pronounced asymmetric transmission at room temperature when vanadium dioxide is in its insulator phase. As the metamaterial is heated, the insulator-to-metal phase transition of vanadium dioxide effectively renders the structure achiral and the transmission asymmetry vanishes. We demonstrate the effect numerically and experimentally, describe it analytically and explain the underlying physical mechanism based on simulated surface current distributions. Potential applications include directionally asymmetric active devices as well as intensity and polarization modulators for electromagnetic waves.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N106954535c444b04895da419d6492038
46 N525f74190700462195b0ae6869e639ae
47 sg:journal.1045337
48 schema:name Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves
49 schema:pagination 4097
50 schema:productId N0a84561af0e7497b9a7a7ae8b922ffe2
51 N456b08fdd80144e3801fbdd43fc67434
52 N46da88e27c6e4e2088f8d7bc0a9b2d2f
53 N5fc477809eb44720896a16cd98070a02
54 Nae67f9ee34dc41e782bd3935106391ff
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112674653
56 https://doi.org/10.1038/s41598-019-40791-4
57 schema:sdDatePublished 2019-04-11T13:21
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N9e543c5d655148349ceedf245f4745e0
60 schema:url https://www.nature.com/articles/s41598-019-40791-4
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N07aae59ecfbe40d2b4ba8b272b645ca4 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
65 schema:familyName Li
66 schema:givenName Hua
67 rdf:type schema:Person
68 N0a84561af0e7497b9a7a7ae8b922ffe2 schema:name doi
69 schema:value 10.1038/s41598-019-40791-4
70 rdf:type schema:PropertyValue
71 N101fe543a67742dd93407bf4bc795180 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
72 schema:familyName Xu
73 schema:givenName Quan
74 rdf:type schema:Person
75 N106954535c444b04895da419d6492038 schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N18c3af1f61a44668bb7ab1f105f2d573 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
78 schema:familyName Zhang
79 schema:givenName Xueqian
80 rdf:type schema:Person
81 N2ac2b4720b6e4bd5972a891e1644afd4 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
82 schema:familyName Zhang
83 schema:givenName Caihong
84 rdf:type schema:Person
85 N2bdde342b6da4fb1bd4863e1214b57f8 rdf:first N07aae59ecfbe40d2b4ba8b272b645ca4
86 rdf:rest Nd530ab5222b64e608a899a2f6f72ff0b
87 N3d875b2bde264c4cad5949abc668fc08 rdf:first Ne7ccd63aec934b3995ebb7f26a2d2295
88 rdf:rest N65a943a3ed3a471fb5e3e862ea804660
89 N456b08fdd80144e3801fbdd43fc67434 schema:name readcube_id
90 schema:value 191cfb12ed86ff654286dcebfd8284165c0d568e03f0d4f4a6128aa502a22569
91 rdf:type schema:PropertyValue
92 N46da88e27c6e4e2088f8d7bc0a9b2d2f schema:name nlm_unique_id
93 schema:value 101563288
94 rdf:type schema:PropertyValue
95 N525f74190700462195b0ae6869e639ae schema:volumeNumber 9
96 rdf:type schema:PublicationVolume
97 N5b78f5b1a93d4a95ba05c1202ba7c9d2 rdf:first N7eec52db901f42858880ecadb37c4b5a
98 rdf:rest Nff5a0a58dc9244039c8120ca6449d064
99 N5fc477809eb44720896a16cd98070a02 schema:name pubmed_id
100 schema:value 30858496
101 rdf:type schema:PropertyValue
102 N65a943a3ed3a471fb5e3e862ea804660 rdf:first N101fe543a67742dd93407bf4bc795180
103 rdf:rest N9fb95f60337448daaccc316e425e888e
104 N7eec52db901f42858880ecadb37c4b5a schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
105 schema:familyName Zou
106 schema:givenName Chongwen
107 rdf:type schema:Person
108 N9e543c5d655148349ceedf245f4745e0 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N9fb95f60337448daaccc316e425e888e rdf:first Nc6566b3f6ba24d77a12efa08159675e0
111 rdf:rest Ndf79f456f4af40af8211e371f94cb037
112 Na17d2f94922b4f91bd35ddd3cd01a859 rdf:first N2ac2b4720b6e4bd5972a891e1644afd4
113 rdf:rest N5b78f5b1a93d4a95ba05c1202ba7c9d2
114 Na326e64977574f199c463396e1ebb698 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
115 schema:familyName Han
116 schema:givenName Jiaguang
117 rdf:type schema:Person
118 Nac8d5021bc1242eaa2c867c4e1c80aad schema:affiliation https://www.grid.ac/institutes/grid.5491.9
119 schema:familyName Plum
120 schema:givenName Eric
121 rdf:type schema:Person
122 Nae67f9ee34dc41e782bd3935106391ff schema:name dimensions_id
123 schema:value pub.1112674653
124 rdf:type schema:PropertyValue
125 Nc6566b3f6ba24d77a12efa08159675e0 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
126 schema:familyName Chen
127 schema:givenName Xieyu
128 rdf:type schema:Person
129 Nd530ab5222b64e608a899a2f6f72ff0b rdf:first N18c3af1f61a44668bb7ab1f105f2d573
130 rdf:rest Na17d2f94922b4f91bd35ddd3cd01a859
131 Ndf79f456f4af40af8211e371f94cb037 rdf:first Nac8d5021bc1242eaa2c867c4e1c80aad
132 rdf:rest N2bdde342b6da4fb1bd4863e1214b57f8
133 Ne7ccd63aec934b3995ebb7f26a2d2295 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
134 schema:familyName Liu
135 schema:givenName Meng
136 rdf:type schema:Person
137 Ned947172a15d42878170c9fff858862b rdf:first Nfb9d8fbf42a3413e903d45e1446c733b
138 rdf:rest rdf:nil
139 Nfb9d8fbf42a3413e903d45e1446c733b schema:affiliation https://www.grid.ac/institutes/grid.65519.3e
140 schema:familyName Zhang
141 schema:givenName Weili
142 rdf:type schema:Person
143 Nff5a0a58dc9244039c8120ca6449d064 rdf:first Na326e64977574f199c463396e1ebb698
144 rdf:rest Ned947172a15d42878170c9fff858862b
145 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
146 schema:name Engineering
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
149 schema:name Materials Engineering
150 rdf:type schema:DefinedTerm
151 sg:grant.3957707 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40791-4
152 rdf:type schema:MonetaryGrant
153 sg:journal.1045337 schema:issn 2045-2322
154 schema:name Scientific Reports
155 rdf:type schema:Periodical
156 sg:pub.10.1038/ncomms1908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045070059
157 https://doi.org/10.1038/ncomms1908
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ncomms2285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038705672
160 https://doi.org/10.1038/ncomms2285
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nphoton.2013.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010629098
163 https://doi.org/10.1038/nphoton.2013.185
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/s41377-018-0024-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105156388
166 https://doi.org/10.1038/s41377-018-0024-y
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/srep08977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010610730
169 https://doi.org/10.1038/srep08977
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep23186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097840
172 https://doi.org/10.1038/srep23186
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/adom.201701204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101238633
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/nl4044482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000054952
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.1342210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696791
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.3109780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028419338
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.3429683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011161256
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.3463466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057956088
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.350285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057963712
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.3580608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047114345
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.3682591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058000044
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.4819017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058081377
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1088/0034-4885/67/5/r03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044305221
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/0034-4885/79/7/076401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059033822
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/2040-8978/13/2/024006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039296147
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physreva.82.053811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013874390
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.80.153104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001722107
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.85.195131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060638885
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.86.035448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639459
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.89.165128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060643226
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.104.253902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030190696
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.108.213905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759781
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.97.167401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016242286
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.97.177401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304529
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.99.063908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834431
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1364/fio.2010.fwo6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099035913
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1364/josab.29.002373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065174228
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1364/oe.18.013425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042901603
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1364/ol.32.000856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224762
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1364/ol.34.003000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227727
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1364/ol.36.001626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065230131
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
233 schema:name Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
236 schema:name Research Institute of Superconductor Electronics, Nanjing University, 210093, Nanjing, China
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
239 schema:name Centre for Photonic Metamaterials & Optoelectronics Research Centre, Zepler Institute, University of Southampton, SO17 1BJ, Southampton, UK
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
242 schema:name National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, China
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.65519.3e schema:alternateName Oklahoma State University
245 schema:name Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), 300072, Tianjin, China
246 School of Electrical and Computer Engineering, Oklahoma State University, 74078, Stillwater, Oklahoma, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...