Reconstruction of noisy images via stochastic resonance in nematic liquid crystals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xingpan Feng, Hongjun Liu, Nan Huang, Zhaolu Wang, Yongbin Zhang

ABSTRACT

We employ nematic liquid crystals as the nonlinear medium to recover noisy images via stochastic resonance, in which nonlinear coupling allows signals to grow at the expense of noise. The process is theoretically analyzed and the cross-correlation is numerically calculated. It is found that the quality of output images is affected by the input noise intensity, the applied voltage and the correlation length of noise light. Noise-hidden images can be effectively recovered by optimizing these parameters. The results suggest that nematic liquid crystals can be used for reconstruction of noisy images via stochastic resonance based on modulation instability with molecule reorientation nonlinearity. More... »

PAGES

3976

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40676-6

DOI

http://dx.doi.org/10.1038/s41598-019-40676-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112641575

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30850690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Transient Optics and Photonics, Xi\u2019an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Xingpan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "State Key Laboratory of Transient Optics and Photonics, Xi\u2019an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi\u2019an, China", 
            "Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hongjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "State Key Laboratory of Transient Optics and Photonics, Xi\u2019an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Nan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "State Key Laboratory of Transient Optics and Photonics, Xi\u2019an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhaolu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Transient Optics and Photonics, Xi\u2019an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yongbin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1464-4266/6/5/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008506385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(94)00636-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012611111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2337268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015936080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021751823", 
          "https://doi.org/10.1038/srep10616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep16183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023246373", 
          "https://doi.org/10.1038/srep16183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385319a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027394951", 
          "https://doi.org/10.1038/385319a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lapl.200410142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037058264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043489577", 
          "https://doi.org/10.1038/nphoton.2010.31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043489577", 
          "https://doi.org/10.1038/nphoton.2010.31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15421407208083858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044347816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365337a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051311130", 
          "https://doi.org/10.1038/365337a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.056222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.056222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.025602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.025602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2002.806185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061306012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2002.1016342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2004.835999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2011.2159829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061336421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1970023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062242979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/23/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.24.001937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065161671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.21.000287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065216546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.40.005367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065238399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v34i1.10782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071279147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.10.102501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091704271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.oe.56.11.117109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061959"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We employ nematic liquid crystals as the nonlinear medium to recover noisy images via stochastic resonance, in which nonlinear coupling allows signals to grow at the expense of noise. The process is theoretically analyzed and the cross-correlation is numerically calculated. It is found that the quality of output images is affected by the input noise intensity, the applied voltage and the correlation length of noise light. Noise-hidden images can be effectively recovered by optimizing these parameters. The results suggest that nematic liquid crystals can be used for reconstruction of noisy images via stochastic resonance based on modulation instability with molecule reorientation nonlinearity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40676-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Reconstruction of noisy images via stochastic resonance in nematic liquid crystals", 
    "pagination": "3976", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "57d3457818e509541da4ec5ede2efeb2a4de8cebe5214c0403450a6aabfe1a69"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30850690"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40676-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112641575"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40676-6", 
      "https://app.dimensions.ai/details/publication/pub.1112641575"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40676-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40676-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40676-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40676-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40676-6'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40676-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6f15bb79af1c4ad8b1052f3f3c7d065a
4 schema:citation sg:pub.10.1038/365337a0
5 sg:pub.10.1038/385319a0
6 sg:pub.10.1038/nphoton.2010.31
7 sg:pub.10.1038/srep10616
8 sg:pub.10.1038/srep16183
9 https://doi.org/10.1002/lapl.200410142
10 https://doi.org/10.1016/0030-4018(94)00636-9
11 https://doi.org/10.1063/1.2337268
12 https://doi.org/10.1080/15421407208083858
13 https://doi.org/10.1088/1464-4266/6/5/017
14 https://doi.org/10.1103/physreve.67.056222
15 https://doi.org/10.1103/physreve.68.025602
16 https://doi.org/10.1103/physrevlett.84.467
17 https://doi.org/10.1103/revmodphys.70.223
18 https://doi.org/10.1109/jqe.2002.806185
19 https://doi.org/10.1109/jstqe.2002.1016342
20 https://doi.org/10.1109/jstqe.2004.835999
21 https://doi.org/10.1109/jstqe.2011.2159829
22 https://doi.org/10.1117/1.oe.56.11.117109
23 https://doi.org/10.1119/1.1970023
24 https://doi.org/10.1209/0295-5075/23/4/001
25 https://doi.org/10.1364/josaa.24.001937
26 https://doi.org/10.1364/ol.21.000287
27 https://doi.org/10.1364/ol.40.005367
28 https://doi.org/10.3402/tellusa.v34i1.10782
29 https://doi.org/10.7567/apex.10.102501
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description We employ nematic liquid crystals as the nonlinear medium to recover noisy images via stochastic resonance, in which nonlinear coupling allows signals to grow at the expense of noise. The process is theoretically analyzed and the cross-correlation is numerically calculated. It is found that the quality of output images is affected by the input noise intensity, the applied voltage and the correlation length of noise light. Noise-hidden images can be effectively recovered by optimizing these parameters. The results suggest that nematic liquid crystals can be used for reconstruction of noisy images via stochastic resonance based on modulation instability with molecule reorientation nonlinearity.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N3d007855397b439ca58f0bd792640240
37 N9473eced0ac742308aad3b614d425f6a
38 sg:journal.1045337
39 schema:name Reconstruction of noisy images via stochastic resonance in nematic liquid crystals
40 schema:pagination 3976
41 schema:productId N21d4683f033a42ccb32fc105d1c0bff0
42 Na79f6eafc3d24081a9cec4256f866bb8
43 Nb5bb4b3ae451409aa53e8ad1d52514bb
44 Nb64236b259f3454394e7c86ad85f615b
45 Nd5b0414947314b1ba77da40735cb66b0
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112641575
47 https://doi.org/10.1038/s41598-019-40676-6
48 schema:sdDatePublished 2019-04-11T13:19
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N754698e0ad6040a28a14e69638149d9e
51 schema:url https://www.nature.com/articles/s41598-019-40676-6
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N21d4683f033a42ccb32fc105d1c0bff0 schema:name readcube_id
56 schema:value 57d3457818e509541da4ec5ede2efeb2a4de8cebe5214c0403450a6aabfe1a69
57 rdf:type schema:PropertyValue
58 N2c01ef5389ba4f9e8f176b055721f03a rdf:first Ncfc8119f09d346e2a5bab9b01ae3b38e
59 rdf:rest N3fecf3b8f00e4a3d8a1f871c0f6aa3fc
60 N39a9d2179bf34aa882926cc1ff086bd3 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
61 schema:familyName Zhang
62 schema:givenName Yongbin
63 rdf:type schema:Person
64 N3d007855397b439ca58f0bd792640240 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N3fecf3b8f00e4a3d8a1f871c0f6aa3fc rdf:first Na7ec333b793a47a3bbb3706196f79963
67 rdf:rest N7b7fb19320bf40c2b39cda96a2ecd9a8
68 N4f5d2a31d53d40d78c4183097d276ff3 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
69 schema:familyName Wang
70 schema:givenName Zhaolu
71 rdf:type schema:Person
72 N53ad82d117cd488fa153164010a81f02 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
73 schema:familyName Feng
74 schema:givenName Xingpan
75 rdf:type schema:Person
76 N6f15bb79af1c4ad8b1052f3f3c7d065a rdf:first N53ad82d117cd488fa153164010a81f02
77 rdf:rest N2c01ef5389ba4f9e8f176b055721f03a
78 N754698e0ad6040a28a14e69638149d9e schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N7b7fb19320bf40c2b39cda96a2ecd9a8 rdf:first N4f5d2a31d53d40d78c4183097d276ff3
81 rdf:rest N91031537f54a42799e800e2c7b508a65
82 N91031537f54a42799e800e2c7b508a65 rdf:first N39a9d2179bf34aa882926cc1ff086bd3
83 rdf:rest rdf:nil
84 N9473eced0ac742308aad3b614d425f6a schema:volumeNumber 9
85 rdf:type schema:PublicationVolume
86 Na79f6eafc3d24081a9cec4256f866bb8 schema:name doi
87 schema:value 10.1038/s41598-019-40676-6
88 rdf:type schema:PropertyValue
89 Na7ec333b793a47a3bbb3706196f79963 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
90 schema:familyName Huang
91 schema:givenName Nan
92 rdf:type schema:Person
93 Nb5bb4b3ae451409aa53e8ad1d52514bb schema:name dimensions_id
94 schema:value pub.1112641575
95 rdf:type schema:PropertyValue
96 Nb64236b259f3454394e7c86ad85f615b schema:name pubmed_id
97 schema:value 30850690
98 rdf:type schema:PropertyValue
99 Ncfc8119f09d346e2a5bab9b01ae3b38e schema:affiliation https://www.grid.ac/institutes/grid.163032.5
100 schema:familyName Liu
101 schema:givenName Hongjun
102 rdf:type schema:Person
103 Nd5b0414947314b1ba77da40735cb66b0 schema:name nlm_unique_id
104 schema:value 101563288
105 rdf:type schema:PropertyValue
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:journal.1045337 schema:issn 2045-2322
113 schema:name Scientific Reports
114 rdf:type schema:Periodical
115 sg:pub.10.1038/365337a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051311130
116 https://doi.org/10.1038/365337a0
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/385319a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027394951
119 https://doi.org/10.1038/385319a0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nphoton.2010.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043489577
122 https://doi.org/10.1038/nphoton.2010.31
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/srep10616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021751823
125 https://doi.org/10.1038/srep10616
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep16183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023246373
128 https://doi.org/10.1038/srep16183
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/lapl.200410142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037058264
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0030-4018(94)00636-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012611111
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.2337268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015936080
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/15421407208083858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044347816
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/1464-4266/6/5/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008506385
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreve.67.056222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730077
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physreve.68.025602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730473
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.84.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821298
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/revmodphys.70.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839421
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/jqe.2002.806185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061306012
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/jstqe.2002.1016342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334528
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/jstqe.2004.835999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334933
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/jstqe.2011.2159829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061336421
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1117/1.oe.56.11.117109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093061959
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1119/1.1970023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062242979
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1209/0295-5075/23/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229598
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1364/josaa.24.001937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065161671
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1364/ol.21.000287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065216546
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1364/ol.40.005367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065238399
167 rdf:type schema:CreativeWork
168 https://doi.org/10.3402/tellusa.v34i1.10782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071279147
169 rdf:type schema:CreativeWork
170 https://doi.org/10.7567/apex.10.102501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091704271
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
173 schema:name Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, China
174 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi’an, China
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
177 schema:name State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi’an, China
178 University of Chinese Academy of Sciences, 100084, Beijing, China
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
181 schema:name State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi’an, China
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...