Diffusion-based tractography atlas of the human acoustic radiation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Chiara Maffei, Silvio Sarubbo, Jorge Jovicich

ABSTRACT

Diffusion MRI tractography allows in-vivo characterization of white matter architecture, including the localization and description of brain fibre bundles. However, some primary bundles are still only partially reconstructed, or not reconstructed at all. The acoustic radiation (AR) represents a primary sensory pathway that has been largely omitted in many tractography studies because its location and anatomical features make it challenging to reconstruct. In this study, we investigated the effects of acquisition and tractography parameters on the AR reconstruction using publicly available Human Connectome Project data. The aims of this study are: (i) using a subgroup of subjects and a reference AR for each subject, define an optimum set of parameters for AR reconstruction, and (ii) use the optimum parameters set on the full group to build a tractography-based atlas of the AR. Starting from the same data, the use of different acquisition and tractography parameters lead to very different AR reconstructions. Optimal results in terms of topographical accuracy and correspondence to the reference were obtained for probabilistic tractography, high b-values and default tractography parameters: these parameters were used to build an AR probabilistic tractography atlas. A significant left-hemispheric lateralization was found in the AR reconstruction of the 34 subjects. More... »

PAGES

4046

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40666-8

DOI

http://dx.doi.org/10.1038/s41598-019-40666-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112675973

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30858451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA", 
            "Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maffei", 
        "givenName": "Chiara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Neurosurgery, Structural and Functional Connectivity Lab (SFC-LSB) Project, \u201cS.Chiara\u201d Hospital, Trento APSS, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarubbo", 
        "givenName": "Silvio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy", 
            "Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jovicich", 
        "givenName": "Jorge", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/ima.22005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001386649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001480216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.08.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004973250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007104158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a3471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011444480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80775-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012820705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012828228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2008.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015084661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2015.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015226509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fninf.2014.00059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016835907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2010/254032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016861062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.12.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018917955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.05.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019390669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020312083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnr.0b013e32832e0cdd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020589234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnr.0b013e32832e0cdd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020589234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnr.0b013e32832e0cdd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020589234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnr.0b013e32832e0cdd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020589234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1405672111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021360468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2013.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023695906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2007.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025777243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027161628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027422051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028169483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0098211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029254918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029443003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2014.04.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029646251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1874440001004010016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029772587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030426720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031799052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.08.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032074943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.08.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032074943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.08.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032074943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.09.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032724366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2005.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034508191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2005.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034508191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-013-0680-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034564198", 
          "https://doi.org/10.1007/s00429-013-0680-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-013-0680-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034564198", 
          "https://doi.org/10.1007/s00429-013-0680-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awg203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035370033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.20319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035676644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/01.neu.0000303189.80049.ab", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035866072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035894807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035894807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000188533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038269724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.10.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038731314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/122.11.2033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039797026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fninf.2015.00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039949008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040841426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042022826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.07.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043749352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044814930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047584423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047584423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047935882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jon.12283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050517306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0063082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051365348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052174982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jocn.2006.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052485682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/erd.10.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053332553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053620815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-016-1298-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053735322", 
          "https://doi.org/10.1007/s00429-016-1298-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-016-1298-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053735322", 
          "https://doi.org/10.1007/s00429-016-1298-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.906424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1932409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077371944", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-017-1471-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091424848", 
          "https://doi.org/10.1007/s00429-017-1471-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-017-1471-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091424848", 
          "https://doi.org/10.1007/s00429-017-1471-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-017-1471-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091424848", 
          "https://doi.org/10.1007/s00429-017-1471-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2018.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103992998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Diffusion MRI tractography allows in-vivo characterization of white matter architecture, including the localization and description of brain fibre bundles. However, some primary bundles are still only partially reconstructed, or not reconstructed at all. The acoustic radiation (AR) represents a primary sensory pathway that has been largely omitted in many tractography studies because its location and anatomical features make it challenging to reconstruct. In this study, we investigated the effects of acquisition and tractography parameters on the AR reconstruction using publicly available Human Connectome Project data. The aims of this study are: (i) using a subgroup of subjects and a reference AR for each subject, define an optimum set of parameters for AR reconstruction, and (ii) use the optimum parameters set on the full group to build a tractography-based atlas of the AR. Starting from the same data, the use of different acquisition and tractography parameters lead to very different AR reconstructions. Optimal results in terms of topographical accuracy and correspondence to the reference were obtained for probabilistic tractography, high b-values and default tractography parameters: these parameters were used to build an AR probabilistic tractography atlas. A significant left-hemispheric lateralization was found in the AR reconstruction of the 34 subjects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40666-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Diffusion-based tractography atlas of the human acoustic radiation", 
    "pagination": "4046", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e154d3a8977a561f6318dc3216d3de15413b101125a2cdda014243b4e685fdb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30858451"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40666-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112675973"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40666-8", 
      "https://app.dimensions.ai/details/publication/pub.1112675973"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78947_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40666-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40666-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40666-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40666-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40666-8'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      86 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40666-8 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Ne6d00a936a8a495784986c74eed4a1d7
4 schema:citation sg:pub.10.1007/s00429-013-0680-x
5 sg:pub.10.1007/s00429-016-1298-6
6 sg:pub.10.1007/s00429-017-1471-6
7 https://app.dimensions.ai/details/publication/pub.1077371944
8 https://doi.org/10.1002/ana.20319
9 https://doi.org/10.1002/hbm.22578
10 https://doi.org/10.1002/ima.22005
11 https://doi.org/10.1002/jmri.21445
12 https://doi.org/10.1002/mrm.1125
13 https://doi.org/10.1002/mrm.24602
14 https://doi.org/10.1002/nbm.1543
15 https://doi.org/10.1002/nbm.3266
16 https://doi.org/10.1006/nimg.2002.1178
17 https://doi.org/10.1016/j.cortex.2008.05.001
18 https://doi.org/10.1016/j.jocn.2006.10.002
19 https://doi.org/10.1016/j.media.2007.06.004
20 https://doi.org/10.1016/j.mri.2013.03.004
21 https://doi.org/10.1016/j.neuroimage.2004.07.037
22 https://doi.org/10.1016/j.neuroimage.2005.08.040
23 https://doi.org/10.1016/j.neuroimage.2006.07.037
24 https://doi.org/10.1016/j.neuroimage.2006.09.018
25 https://doi.org/10.1016/j.neuroimage.2006.12.041
26 https://doi.org/10.1016/j.neuroimage.2007.02.016
27 https://doi.org/10.1016/j.neuroimage.2007.06.041
28 https://doi.org/10.1016/j.neuroimage.2009.09.033
29 https://doi.org/10.1016/j.neuroimage.2010.07.055
30 https://doi.org/10.1016/j.neuroimage.2011.09.086
31 https://doi.org/10.1016/j.neuroimage.2011.10.045
32 https://doi.org/10.1016/j.neuroimage.2012.06.002
33 https://doi.org/10.1016/j.neuroimage.2012.06.005
34 https://doi.org/10.1016/j.neuroimage.2013.05.078
35 https://doi.org/10.1016/j.neuroimage.2013.08.072
36 https://doi.org/10.1016/j.neuroimage.2014.04.074
37 https://doi.org/10.1016/j.neuroimage.2015.08.075
38 https://doi.org/10.1016/j.neuroimage.2016.01.011
39 https://doi.org/10.1016/j.neuroimage.2016.09.029
40 https://doi.org/10.1016/j.neuroimage.2018.05.027
41 https://doi.org/10.1016/j.nicl.2015.09.014
42 https://doi.org/10.1016/s0006-3495(94)80775-1
43 https://doi.org/10.1073/pnas.1405672111
44 https://doi.org/10.1093/brain/122.11.2033
45 https://doi.org/10.1093/brain/awg203
46 https://doi.org/10.1097/wnr.0b013e32832e0cdd
47 https://doi.org/10.1109/42.906424
48 https://doi.org/10.1111/jon.12283
49 https://doi.org/10.1155/2010/254032
50 https://doi.org/10.1159/000188533
51 https://doi.org/10.1227/01.neu.0000303189.80049.ab
52 https://doi.org/10.1371/journal.pcbi.1004692
53 https://doi.org/10.1371/journal.pone.0063082
54 https://doi.org/10.1371/journal.pone.0098211
55 https://doi.org/10.1586/erd.10.28
56 https://doi.org/10.2174/1874440001004010016
57 https://doi.org/10.2307/1932409
58 https://doi.org/10.3174/ajnr.a3471
59 https://doi.org/10.3389/fninf.2014.00059
60 https://doi.org/10.3389/fninf.2015.00008
61 schema:datePublished 2019-12
62 schema:datePublishedReg 2019-12-01
63 schema:description Diffusion MRI tractography allows in-vivo characterization of white matter architecture, including the localization and description of brain fibre bundles. However, some primary bundles are still only partially reconstructed, or not reconstructed at all. The acoustic radiation (AR) represents a primary sensory pathway that has been largely omitted in many tractography studies because its location and anatomical features make it challenging to reconstruct. In this study, we investigated the effects of acquisition and tractography parameters on the AR reconstruction using publicly available Human Connectome Project data. The aims of this study are: (i) using a subgroup of subjects and a reference AR for each subject, define an optimum set of parameters for AR reconstruction, and (ii) use the optimum parameters set on the full group to build a tractography-based atlas of the AR. Starting from the same data, the use of different acquisition and tractography parameters lead to very different AR reconstructions. Optimal results in terms of topographical accuracy and correspondence to the reference were obtained for probabilistic tractography, high b-values and default tractography parameters: these parameters were used to build an AR probabilistic tractography atlas. A significant left-hemispheric lateralization was found in the AR reconstruction of the 34 subjects.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree true
67 schema:isPartOf N1b6383a7be214d0ebedc709877174680
68 N244b48837aab48fb8ce015a35592a85e
69 sg:journal.1045337
70 schema:name Diffusion-based tractography atlas of the human acoustic radiation
71 schema:pagination 4046
72 schema:productId N0f97ea1ab326403ab171eb66419f83b4
73 N22e0838e876f4ce1a5ba80afe21a35e5
74 Nc155670588e44b21895f8d2269f1f73c
75 Nde03a0d4a1b249818c052c9438e55aa7
76 Ne2d64142b9f14beb8244e4ca2449f1c2
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112675973
78 https://doi.org/10.1038/s41598-019-40666-8
79 schema:sdDatePublished 2019-04-11T13:18
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nf9bf73396d1e4a4aa61076ce9eeaea35
82 schema:url https://www.nature.com/articles/s41598-019-40666-8
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0f97ea1ab326403ab171eb66419f83b4 schema:name dimensions_id
87 schema:value pub.1112675973
88 rdf:type schema:PropertyValue
89 N1b6383a7be214d0ebedc709877174680 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N22e0838e876f4ce1a5ba80afe21a35e5 schema:name readcube_id
92 schema:value 5e154d3a8977a561f6318dc3216d3de15413b101125a2cdda014243b4e685fdb
93 rdf:type schema:PropertyValue
94 N244b48837aab48fb8ce015a35592a85e schema:volumeNumber 9
95 rdf:type schema:PublicationVolume
96 N34c92fe1384640ed858d04369ac3cc19 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
97 schema:familyName Jovicich
98 schema:givenName Jorge
99 rdf:type schema:Person
100 N36e37736bbab4d09a999d72317af1d82 schema:name Division of Neurosurgery, Structural and Functional Connectivity Lab (SFC-LSB) Project, “S.Chiara” Hospital, Trento APSS, Italy
101 rdf:type schema:Organization
102 N6498e633e9564b4fb7a903bd7b722cd6 schema:affiliation N36e37736bbab4d09a999d72317af1d82
103 schema:familyName Sarubbo
104 schema:givenName Silvio
105 rdf:type schema:Person
106 N6a26fc8156ce4687950088821a1d7f26 rdf:first N34c92fe1384640ed858d04369ac3cc19
107 rdf:rest rdf:nil
108 N72a6ec67414640cb8d27f9a3d8bf1168 rdf:first N6498e633e9564b4fb7a903bd7b722cd6
109 rdf:rest N6a26fc8156ce4687950088821a1d7f26
110 N7adfd82fcb7643aa9c6344b63e4670ce schema:affiliation https://www.grid.ac/institutes/grid.11696.39
111 schema:familyName Maffei
112 schema:givenName Chiara
113 rdf:type schema:Person
114 Nc155670588e44b21895f8d2269f1f73c schema:name nlm_unique_id
115 schema:value 101563288
116 rdf:type schema:PropertyValue
117 Nde03a0d4a1b249818c052c9438e55aa7 schema:name doi
118 schema:value 10.1038/s41598-019-40666-8
119 rdf:type schema:PropertyValue
120 Ne2d64142b9f14beb8244e4ca2449f1c2 schema:name pubmed_id
121 schema:value 30858451
122 rdf:type schema:PropertyValue
123 Ne6d00a936a8a495784986c74eed4a1d7 rdf:first N7adfd82fcb7643aa9c6344b63e4670ce
124 rdf:rest N72a6ec67414640cb8d27f9a3d8bf1168
125 Nf9bf73396d1e4a4aa61076ce9eeaea35 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
131 schema:name Neurosciences
132 rdf:type schema:DefinedTerm
133 sg:journal.1045337 schema:issn 2045-2322
134 schema:name Scientific Reports
135 rdf:type schema:Periodical
136 sg:pub.10.1007/s00429-013-0680-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034564198
137 https://doi.org/10.1007/s00429-013-0680-x
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00429-016-1298-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053735322
140 https://doi.org/10.1007/s00429-016-1298-6
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00429-017-1471-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091424848
143 https://doi.org/10.1007/s00429-017-1471-6
144 rdf:type schema:CreativeWork
145 https://app.dimensions.ai/details/publication/pub.1077371944 schema:CreativeWork
146 https://doi.org/10.1002/ana.20319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035676644
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/hbm.22578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047935882
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/ima.22005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001386649
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/jmri.21445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040841426
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/mrm.1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027161628
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/mrm.24602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012828228
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/nbm.1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035894807
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/nbm.3266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020312083
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1006/nimg.2002.1178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047584423
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.cortex.2008.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015084661
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jocn.2006.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052485682
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.media.2007.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025777243
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.mri.2013.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023695906
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.neuroimage.2004.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027422051
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.neuroimage.2005.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034508191
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.neuroimage.2006.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620815
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.neuroimage.2006.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029443003
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.neuroimage.2006.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018917955
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.neuroimage.2007.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031799052
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.neuroimage.2007.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001480216
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.neuroimage.2009.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052174982
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.neuroimage.2010.07.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043749352
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.neuroimage.2011.09.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032724366
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.neuroimage.2011.10.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038731314
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.neuroimage.2012.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042022826
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.neuroimage.2012.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007104158
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.neuroimage.2013.05.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019390669
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.neuroimage.2013.08.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004973250
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.neuroimage.2014.04.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029646251
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.neuroimage.2015.08.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032074943
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.neuroimage.2016.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044814930
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.neuroimage.2016.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030426720
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.neuroimage.2018.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103992998
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.nicl.2015.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015226509
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0006-3495(94)80775-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012820705
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1073/pnas.1405672111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021360468
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/brain/122.11.2033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039797026
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/brain/awg203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035370033
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1097/wnr.0b013e32832e0cdd schema:sameAs https://app.dimensions.ai/details/publication/pub.1020589234
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/42.906424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171006
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/jon.12283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050517306
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1155/2010/254032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016861062
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1159/000188533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038269724
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1227/01.neu.0000303189.80049.ab schema:sameAs https://app.dimensions.ai/details/publication/pub.1035866072
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1371/journal.pcbi.1004692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028169483
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1371/journal.pone.0063082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051365348
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1371/journal.pone.0098211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029254918
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1586/erd.10.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053332553
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2174/1874440001004010016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029772587
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2307/1932409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656769
245 rdf:type schema:CreativeWork
246 https://doi.org/10.3174/ajnr.a3471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011444480
247 rdf:type schema:CreativeWork
248 https://doi.org/10.3389/fninf.2014.00059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016835907
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3389/fninf.2015.00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039949008
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
253 schema:name Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
254 Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy
255 Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...