Topological edge states in high-temperature superconductiving FeSe/SrTiO3 films with Te substitution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Li Chen, Hongmei Liu, Chuan Jiang, Changmin Shi, Dongchao Wang, Guangliang Cui, Xiaolong Li, Qiandong Zhuang

ABSTRACT

Using first principles theory, we investigated the behavior of the one-dimensional (1D) topological edge states of high temperature superconductiviing FeSe/SrTiO3 films with Te atoms substitution to Se atoms in the bottom (top) layer in single-layer FeSe, as a function of strain. It was discovered that the 1D topological edge states are present in single-unit-cell FeSe film on SrTiO3, but are absent when more than 50% Se atoms are replaced by Te atoms. Stress induced displacive phase transformation exists in FeSe/SrTiO3 film when Te atoms substitute Se atoms in the bottom (top) layer in single-layer FeSe under 3% strain respectively. The 1D topological edge states are present under 3% (1.8%) strain in FeSe/SrTiO3 films with Te substitution Se in the bottom (top) layer in single-layer FeSe, even up to 5%, respectively. This indicates that the bonding angle of Se-Fe-Se (Te) and the distance of Te (or Se) atoms to the Fe plane are correlated with the topological edge states. Our findings provide an effective interface system that provides both superconducting and topological states, opening a new route for realizing 2D topological superconductors with proximity effect. More... »

PAGES

4154

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40644-0

DOI

http://dx.doi.org/10.1038/s41598-019-40644-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112677320

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30858432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Linyi University", 
          "id": "https://www.grid.ac/institutes/grid.410747.1", 
          "name": [
            "Institute of Condensed Matter Physics, Linyi University, 276000, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Linyi University", 
          "id": "https://www.grid.ac/institutes/grid.410747.1", 
          "name": [
            "Institute of Condensed Matter Physics, Linyi University, 276000, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hongmei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Data Acquisition, National Instruments, 201204, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Chuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Linyi University", 
          "id": "https://www.grid.ac/institutes/grid.410747.1", 
          "name": [
            "Institute of Condensed Matter Physics, Linyi University, 276000, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Changmin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Linyi University", 
          "id": "https://www.grid.ac/institutes/grid.410747.1", 
          "name": [
            "Institute of Condensed Matter Physics, Linyi University, 276000, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Dongchao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Linyi University", 
          "id": "https://www.grid.ac/institutes/grid.410747.1", 
          "name": [
            "Institute of Condensed Matter Physics, Linyi University, 276000, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Guangliang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Linyi University", 
          "id": "https://www.grid.ac/institutes/grid.410747.1", 
          "name": [
            "Institute of Condensed Matter Physics, Linyi University, 276000, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaolong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Physics Department, Lancaster University, LA1 4YB, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuang", 
        "givenName": "Qiandong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.83.045114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004679290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.045114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004679290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/29/3/037402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005911355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009737629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cp04534k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010113877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.031053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011832746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.031053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011832746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/31/1/017401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012254453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013694903", 
          "https://doi.org/10.1038/ncomms2387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020976674", 
          "https://doi.org/10.1038/nmat4686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021139921", 
          "https://doi.org/10.1038/srep02213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.245209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027207855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.245209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027207855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031043737", 
          "https://doi.org/10.1038/ncomms1946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552947", 
          "https://doi.org/10.1038/nmat3648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035845643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035845643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/14/1/014402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036128908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.055501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039791179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.055501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039791179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039895496", 
          "https://doi.org/10.1038/ncomms2451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040061521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040061521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.066602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040332670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.066602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040332670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.156601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040639134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.156601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040639134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2007.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041208656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.235123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041982055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.235123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041982055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047734086", 
          "https://doi.org/10.1038/nmat3654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048987481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048987481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052482923", 
          "https://doi.org/10.1038/nature13894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl5009212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3033223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057895316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.134508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.134508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.220503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.220503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.165104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.165104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.227401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.227401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.246801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.246801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Using first principles theory, we investigated the behavior of the one-dimensional (1D) topological edge states of high temperature superconductiviing FeSe/SrTiO3 films with Te atoms substitution to Se atoms in the bottom (top) layer in single-layer FeSe, as a function of strain. It was discovered that the 1D topological edge states are present in single-unit-cell FeSe film on SrTiO3, but are absent when more than 50% Se atoms are replaced by Te atoms. Stress induced displacive phase transformation exists in FeSe/SrTiO3 film when Te atoms substitute Se atoms in the bottom (top) layer in single-layer FeSe under 3% strain respectively. The 1D topological edge states are present under 3% (1.8%) strain in FeSe/SrTiO3 films with Te substitution Se in the bottom (top) layer in single-layer FeSe, even up to 5%, respectively. This indicates that the bonding angle of Se-Fe-Se (Te) and the distance of Te (or Se) atoms to the Fe plane are correlated with the topological edge states. Our findings provide an effective interface system that provides both superconducting and topological states, opening a new route for realizing 2D topological superconductors with proximity effect.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40644-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Topological edge states in high-temperature superconductiving FeSe/SrTiO3 films with Te substitution", 
    "pagination": "4154", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5a39be8bb3a022ea02826de982e01209b94fe51558d221d08f921f39ac4f54f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30858432"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40644-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112677320"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40644-0", 
      "https://app.dimensions.ai/details/publication/pub.1112677320"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40644-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40644-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40644-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40644-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40644-0'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40644-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7486b90db39747699d91aad5917fc77d
4 schema:citation sg:pub.10.1038/nature13894
5 sg:pub.10.1038/ncomms1946
6 sg:pub.10.1038/ncomms2387
7 sg:pub.10.1038/ncomms2451
8 sg:pub.10.1038/nmat3648
9 sg:pub.10.1038/nmat3654
10 sg:pub.10.1038/nmat4686
11 sg:pub.10.1038/srep02213
12 https://doi.org/10.1002/jcc.20495
13 https://doi.org/10.1016/j.carbon.2011.04.043
14 https://doi.org/10.1016/j.cpc.2007.11.016
15 https://doi.org/10.1021/nl5009212
16 https://doi.org/10.1039/c6cp04534k
17 https://doi.org/10.1063/1.3033223
18 https://doi.org/10.1088/0256-307x/29/3/037402
19 https://doi.org/10.1088/0256-307x/31/1/017401
20 https://doi.org/10.1088/1468-6996/14/1/014402
21 https://doi.org/10.1103/physrev.101.944
22 https://doi.org/10.1103/physrevb.81.245209
23 https://doi.org/10.1103/physrevb.83.045114
24 https://doi.org/10.1103/physrevb.85.195116
25 https://doi.org/10.1103/physrevb.85.235123
26 https://doi.org/10.1103/physrevb.86.134508
27 https://doi.org/10.1103/physrevb.87.235420
28 https://doi.org/10.1103/physrevb.89.060506
29 https://doi.org/10.1103/physrevb.91.220503
30 https://doi.org/10.1103/physrevb.92.115119
31 https://doi.org/10.1103/physrevb.92.165104
32 https://doi.org/10.1103/physrevlett.107.066602
33 https://doi.org/10.1103/physrevlett.109.055501
34 https://doi.org/10.1103/physrevlett.109.227401
35 https://doi.org/10.1103/physrevlett.111.246801
36 https://doi.org/10.1103/physrevlett.61.2015
37 https://doi.org/10.1103/physrevlett.92.037204
38 https://doi.org/10.1103/physrevlett.95.156601
39 https://doi.org/10.1103/physrevx.4.031053
40 https://doi.org/10.1126/science.1187399
41 schema:datePublished 2019-12
42 schema:datePublishedReg 2019-12-01
43 schema:description Using first principles theory, we investigated the behavior of the one-dimensional (1D) topological edge states of high temperature superconductiviing FeSe/SrTiO<sub>3</sub> films with Te atoms substitution to Se atoms in the bottom (top) layer in single-layer FeSe, as a function of strain. It was discovered that the 1D topological edge states are present in single-unit-cell FeSe film on SrTiO<sub>3</sub>, but are absent when more than 50% Se atoms are replaced by Te atoms. Stress induced displacive phase transformation exists in FeSe/SrTiO<sub>3</sub> film when Te atoms substitute Se atoms in the bottom (top) layer in single-layer FeSe under 3% strain respectively. The 1D topological edge states are present under 3% (1.8%) strain in FeSe/SrTiO<sub>3</sub> films with Te substitution Se in the bottom (top) layer in single-layer FeSe, even up to 5%, respectively. This indicates that the bonding angle of Se-Fe-Se (Te) and the distance of Te (or Se) atoms to the Fe plane are correlated with the topological edge states. Our findings provide an effective interface system that provides both superconducting and topological states, opening a new route for realizing 2D topological superconductors with proximity effect.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N449787fef91b4783bcb2d97ea2d960ab
48 Nbdfd6568e28d42daba4ca86af35f3697
49 sg:journal.1045337
50 schema:name Topological edge states in high-temperature superconductiving FeSe/SrTiO3 films with Te substitution
51 schema:pagination 4154
52 schema:productId N1c45b099ca794c23808d43bb8e68c427
53 Na680602d74f243e68d7e6820666d268a
54 Nb4d0faaff7f743feb3471d8ba065472c
55 Nb5a7895857504279ba3bfef407a3ce7e
56 Nc08deb3ff149415db3997692d8eb0318
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112677320
58 https://doi.org/10.1038/s41598-019-40644-0
59 schema:sdDatePublished 2019-04-11T13:17
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nb81f3cfa1699432a8e8ff67268f562a4
62 schema:url https://www.nature.com/articles/s41598-019-40644-0
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0d38b7eb193d491089d43a493c6b2b18 rdf:first N183838ba352d46979a3ac00e26e28629
67 rdf:rest Nd9e65d5843eb44ebb37ea367075f975f
68 N0f488f2f36604cba8bc50d12e97dcfb5 rdf:first N53be11893f2d45269ef8bf53a52c1bc5
69 rdf:rest N8726c9015eb44ee5b280f4141f398d97
70 N183838ba352d46979a3ac00e26e28629 schema:affiliation https://www.grid.ac/institutes/grid.410747.1
71 schema:familyName Cui
72 schema:givenName Guangliang
73 rdf:type schema:Person
74 N1c45b099ca794c23808d43bb8e68c427 schema:name doi
75 schema:value 10.1038/s41598-019-40644-0
76 rdf:type schema:PropertyValue
77 N233a76780979432cb29c55c275c54b2c schema:affiliation https://www.grid.ac/institutes/grid.410747.1
78 schema:familyName Chen
79 schema:givenName Li
80 rdf:type schema:Person
81 N449787fef91b4783bcb2d97ea2d960ab schema:volumeNumber 9
82 rdf:type schema:PublicationVolume
83 N4d7e55be7c6f440eb31e4abaf4728bbc rdf:first N641d1e87924b42b2ac9db3f13b4ea67d
84 rdf:rest rdf:nil
85 N53be11893f2d45269ef8bf53a52c1bc5 schema:affiliation https://www.grid.ac/institutes/grid.410747.1
86 schema:familyName Liu
87 schema:givenName Hongmei
88 rdf:type schema:Person
89 N5c0c2b7609e2451f897eba92de81acac rdf:first N77f5e6663c3b4eddbb113e3c5b4a2021
90 rdf:rest N0d38b7eb193d491089d43a493c6b2b18
91 N5e709135ed394710b95c1782cd50f9c9 schema:affiliation https://www.grid.ac/institutes/grid.410747.1
92 schema:familyName Shi
93 schema:givenName Changmin
94 rdf:type schema:Person
95 N641d1e87924b42b2ac9db3f13b4ea67d schema:affiliation https://www.grid.ac/institutes/grid.9835.7
96 schema:familyName Zhuang
97 schema:givenName Qiandong
98 rdf:type schema:Person
99 N7486b90db39747699d91aad5917fc77d rdf:first N233a76780979432cb29c55c275c54b2c
100 rdf:rest N0f488f2f36604cba8bc50d12e97dcfb5
101 N77f5e6663c3b4eddbb113e3c5b4a2021 schema:affiliation https://www.grid.ac/institutes/grid.410747.1
102 schema:familyName Wang
103 schema:givenName Dongchao
104 rdf:type schema:Person
105 N7d39659359c74929921a510a998d7c85 schema:affiliation Ne7ac8eaac4774d98a36907c26d4de7d9
106 schema:familyName Jiang
107 schema:givenName Chuan
108 rdf:type schema:Person
109 N8726c9015eb44ee5b280f4141f398d97 rdf:first N7d39659359c74929921a510a998d7c85
110 rdf:rest N8c6659c16ad64fc4ac0b82e6fe047f8e
111 N8c6659c16ad64fc4ac0b82e6fe047f8e rdf:first N5e709135ed394710b95c1782cd50f9c9
112 rdf:rest N5c0c2b7609e2451f897eba92de81acac
113 Na680602d74f243e68d7e6820666d268a schema:name pubmed_id
114 schema:value 30858432
115 rdf:type schema:PropertyValue
116 Nb4d0faaff7f743feb3471d8ba065472c schema:name dimensions_id
117 schema:value pub.1112677320
118 rdf:type schema:PropertyValue
119 Nb5a7895857504279ba3bfef407a3ce7e schema:name nlm_unique_id
120 schema:value 101563288
121 rdf:type schema:PropertyValue
122 Nb81f3cfa1699432a8e8ff67268f562a4 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nbdfd6568e28d42daba4ca86af35f3697 schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 Nbfa7f7d1f663479c9c53ca812941ed0e schema:affiliation https://www.grid.ac/institutes/grid.410747.1
127 schema:familyName Li
128 schema:givenName Xiaolong
129 rdf:type schema:Person
130 Nc08deb3ff149415db3997692d8eb0318 schema:name readcube_id
131 schema:value a5a39be8bb3a022ea02826de982e01209b94fe51558d221d08f921f39ac4f54f
132 rdf:type schema:PropertyValue
133 Nd9e65d5843eb44ebb37ea367075f975f rdf:first Nbfa7f7d1f663479c9c53ca812941ed0e
134 rdf:rest N4d7e55be7c6f440eb31e4abaf4728bbc
135 Ne7ac8eaac4774d98a36907c26d4de7d9 schema:name Department of Data Acquisition, National Instruments, 201204, Shanghai, China
136 rdf:type schema:Organization
137 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
138 schema:name Engineering
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
141 schema:name Materials Engineering
142 rdf:type schema:DefinedTerm
143 sg:journal.1045337 schema:issn 2045-2322
144 schema:name Scientific Reports
145 rdf:type schema:Periodical
146 sg:pub.10.1038/nature13894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052482923
147 https://doi.org/10.1038/nature13894
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/ncomms1946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031043737
150 https://doi.org/10.1038/ncomms1946
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/ncomms2387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013694903
153 https://doi.org/10.1038/ncomms2387
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ncomms2451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039895496
156 https://doi.org/10.1038/ncomms2451
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmat3648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552947
159 https://doi.org/10.1038/nmat3648
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmat3654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047734086
162 https://doi.org/10.1038/nmat3654
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmat4686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020976674
165 https://doi.org/10.1038/nmat4686
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/srep02213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021139921
168 https://doi.org/10.1038/srep02213
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jcc.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734228
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.carbon.2011.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009737629
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cpc.2007.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041208656
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/nl5009212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220732
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1039/c6cp04534k schema:sameAs https://app.dimensions.ai/details/publication/pub.1010113877
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.3033223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057895316
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1088/0256-307x/29/3/037402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005911355
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/0256-307x/31/1/017401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012254453
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/1468-6996/14/1/014402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036128908
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrev.101.944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417317
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.81.245209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027207855
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.83.045114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004679290
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.85.195116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035845643
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.85.235123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041982055
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.86.134508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640094
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.87.235420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040061521
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.89.060506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642850
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.91.220503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646085
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.92.115119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647074
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.92.165104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647549
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.107.066602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040332670
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.109.055501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039791179
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.109.227401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760632
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.111.246801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762339
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.61.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797796
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.92.037204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048987481
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.95.156601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040639134
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevx.4.031053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011832746
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1187399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013203845
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.410747.1 schema:alternateName Linyi University
229 schema:name Institute of Condensed Matter Physics, Linyi University, 276000, Shandong, China
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.9835.7 schema:alternateName Lancaster University
232 schema:name Physics Department, Lancaster University, LA1 4YB, Lancaster, UK
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...