First-in-human clinical study of novel technique to diagnose malignant melanoma via thermal conductivity measurements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Takahiro Okabe, Taku Fujimura, Junnosuke Okajima, Yumi Kambayashi, Setsuya Aiba, Shigenao Maruyama

ABSTRACT

Melanoma is an aggressive skin cancer that originates from melanocytes and, especially in the case of early-stage melanoma, is distributed adjacent to the epidermis and superficial dermis. Although early-stage melanoma can be distinguished from benign nevus via a dermoscopy, it is difficult to distinguish invasive melanoma in its early stages from in situ melanoma. Because invasive melanoma must undergo a sentinel lymph node biopsy to be diagnosed, a non-invasive method to detect the micro-invasion of early-stage melanoma is needed for dermato-oncologists. This paper proposes a novel quantitative melanoma identification method based on accurate measurements of thermal conductivity using a pen-shaped device. This method requires skin temperature data for one minute to determine the effective thermal conductivity of the skin, allowing it to distinguish melanoma lesions from healthy skin. Results suggest that effective thermal conductivity was negative for in situ melanoma. However, in accordance with tumour progression, effective thermal conductivity was larger in invasive melanoma. The proposed thermal conductivity measurement is a novel tool that detects the micro-invasion of melanoma. More... »

PAGES

3853

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40444-6

DOI

http://dx.doi.org/10.1038/s41598-019-40444-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112604245

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30846837


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hirosaki University", 
          "id": "https://www.grid.ac/institutes/grid.257016.7", 
          "name": [
            "Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okabe", 
        "givenName": "Takahiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Graduate School of Medicine, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujimura", 
        "givenName": "Taku", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Institute of Fluid Science, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okajima", 
        "givenName": "Junnosuke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Graduate School of Medicine, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kambayashi", 
        "givenName": "Yumi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Graduate School of Medicine, Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aiba", 
        "givenName": "Setsuya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute Of Technology", 
          "id": "https://www.grid.ac/institutes/grid.482504.f", 
          "name": [
            "National Institute of Technology, Hachinohe College, Hachinohe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maruyama", 
        "givenName": "Shigenao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-0233/19/7/075104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006581659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0738-081x(95)00073-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022779026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4725.1981.tb00629.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038560461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4725.1981.tb00629.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038560461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-8285-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039142765", 
          "https://doi.org/10.1007/978-1-4684-8285-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-8285-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039142765", 
          "https://doi.org/10.1007/978-1-4684-8285-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049945158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/ccid.s27902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051700233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/19/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/19/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083416012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1346-8138.13629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085184782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1613210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085917022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bjd.16098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092412815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jdv.14782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100232088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamadermatol.2018.0212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103422554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104593387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11864-018-0560-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105179185", 
          "https://doi.org/10.1007/s11864-018-0560-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Melanoma is an aggressive skin cancer that originates from melanocytes and, especially in the case of early-stage melanoma, is distributed adjacent to the epidermis and superficial dermis. Although early-stage melanoma can be distinguished from benign nevus via a dermoscopy, it is difficult to distinguish invasive melanoma in its early stages from in situ melanoma. Because invasive melanoma must undergo a sentinel lymph node biopsy to be diagnosed, a non-invasive method to detect the micro-invasion of early-stage melanoma is needed for dermato-oncologists. This paper proposes a novel quantitative melanoma identification method based on accurate measurements of thermal conductivity using a pen-shaped device. This method requires skin temperature data for one minute to determine the effective thermal conductivity of the skin, allowing it to distinguish melanoma lesions from healthy skin. Results suggest that effective thermal conductivity was negative for in situ melanoma. However, in accordance with tumour progression, effective thermal conductivity was larger in invasive melanoma. The proposed thermal conductivity measurement is a novel tool that detects the micro-invasion of melanoma.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40444-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "First-in-human clinical study of novel technique to diagnose malignant melanoma via thermal conductivity measurements", 
    "pagination": "3853", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "90b45d46f9bc95cb65b897ba61437493b17f2962ab43949f201667c2341e36fd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30846837"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40444-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112604245"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40444-6", 
      "https://app.dimensions.ai/details/publication/pub.1112604245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57865_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40444-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40444-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40444-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40444-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40444-6'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      44 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40444-6 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nea42c9769ec145d794333d2e28f0eb62
4 schema:citation sg:pub.10.1007/978-1-4684-8285-0
5 sg:pub.10.1007/s11864-018-0560-y
6 https://doi.org/10.1001/jamadermatol.2018.0212
7 https://doi.org/10.1016/0738-081x(95)00073-o
8 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.072
9 https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.039
10 https://doi.org/10.1016/j.ijthermalsci.2010.10.019
11 https://doi.org/10.1056/nejmoa1613210
12 https://doi.org/10.1088/0031-9155/55/19/020
13 https://doi.org/10.1088/0957-0233/19/7/075104
14 https://doi.org/10.1111/1346-8138.13629
15 https://doi.org/10.1111/bjd.16098
16 https://doi.org/10.1111/j.1524-4725.1981.tb00629.x
17 https://doi.org/10.1111/jdv.14782
18 https://doi.org/10.2147/ccid.s27902
19 schema:datePublished 2019-12
20 schema:datePublishedReg 2019-12-01
21 schema:description Melanoma is an aggressive skin cancer that originates from melanocytes and, especially in the case of early-stage melanoma, is distributed adjacent to the epidermis and superficial dermis. Although early-stage melanoma can be distinguished from benign nevus via a dermoscopy, it is difficult to distinguish invasive melanoma in its early stages from in situ melanoma. Because invasive melanoma must undergo a sentinel lymph node biopsy to be diagnosed, a non-invasive method to detect the micro-invasion of early-stage melanoma is needed for dermato-oncologists. This paper proposes a novel quantitative melanoma identification method based on accurate measurements of thermal conductivity using a pen-shaped device. This method requires skin temperature data for one minute to determine the effective thermal conductivity of the skin, allowing it to distinguish melanoma lesions from healthy skin. Results suggest that effective thermal conductivity was negative for in situ melanoma. However, in accordance with tumour progression, effective thermal conductivity was larger in invasive melanoma. The proposed thermal conductivity measurement is a novel tool that detects the micro-invasion of melanoma.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N00546d8310db4c10b961b3f10b22b433
26 N1ba39a45d97a47fb85d6a19104c1f81e
27 sg:journal.1045337
28 schema:name First-in-human clinical study of novel technique to diagnose malignant melanoma via thermal conductivity measurements
29 schema:pagination 3853
30 schema:productId N343b9291241546c9bd95af5e264ce6c0
31 N35e02146e39840f787f0cffe907c5b8c
32 N803302f27eec45149e2bdfc518e0990b
33 Nbabc74c0a55243679fe814638786ce68
34 Ndbbafade76c143edabc891a939e278e6
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112604245
36 https://doi.org/10.1038/s41598-019-40444-6
37 schema:sdDatePublished 2019-04-11T11:25
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Na28e6c7b1987444891caa24683992e7d
40 schema:url https://www.nature.com/articles/s41598-019-40444-6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N00546d8310db4c10b961b3f10b22b433 schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N1ba39a45d97a47fb85d6a19104c1f81e schema:volumeNumber 9
47 rdf:type schema:PublicationVolume
48 N343b9291241546c9bd95af5e264ce6c0 schema:name dimensions_id
49 schema:value pub.1112604245
50 rdf:type schema:PropertyValue
51 N35e02146e39840f787f0cffe907c5b8c schema:name pubmed_id
52 schema:value 30846837
53 rdf:type schema:PropertyValue
54 N576408dbfd144e5d8cf659b3ed66ff1a rdf:first Nd5fc0ecf17004e3c9ed6a564dbbc106d
55 rdf:rest N7c010ee316234363be5473e47dfe36d7
56 N5c23fe02413946608b8baf1370a578c9 rdf:first Nb8705b5e9a5a47779de6b8d86da3361b
57 rdf:rest N576408dbfd144e5d8cf659b3ed66ff1a
58 N67af865fcaf04ca7921f183285dae873 schema:affiliation https://www.grid.ac/institutes/grid.482504.f
59 schema:familyName Maruyama
60 schema:givenName Shigenao
61 rdf:type schema:Person
62 N7c010ee316234363be5473e47dfe36d7 rdf:first Ne06e82ae22764d29ab9d7ac8c2323142
63 rdf:rest Nffa1dfd665b84a129e1ac7bb3dca4703
64 N803302f27eec45149e2bdfc518e0990b schema:name nlm_unique_id
65 schema:value 101563288
66 rdf:type schema:PropertyValue
67 Na28e6c7b1987444891caa24683992e7d schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nb8705b5e9a5a47779de6b8d86da3361b schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
70 schema:familyName Okajima
71 schema:givenName Junnosuke
72 rdf:type schema:Person
73 Nbabc74c0a55243679fe814638786ce68 schema:name readcube_id
74 schema:value 90b45d46f9bc95cb65b897ba61437493b17f2962ab43949f201667c2341e36fd
75 rdf:type schema:PropertyValue
76 Nc03bca0bfefe4ac09a93392f76f89e25 rdf:first Nd52918bfa089435190c3cd0cf8831d03
77 rdf:rest N5c23fe02413946608b8baf1370a578c9
78 Nd52918bfa089435190c3cd0cf8831d03 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
79 schema:familyName Fujimura
80 schema:givenName Taku
81 rdf:type schema:Person
82 Nd5fc0ecf17004e3c9ed6a564dbbc106d schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
83 schema:familyName Kambayashi
84 schema:givenName Yumi
85 rdf:type schema:Person
86 Ndbbafade76c143edabc891a939e278e6 schema:name doi
87 schema:value 10.1038/s41598-019-40444-6
88 rdf:type schema:PropertyValue
89 Ne06e82ae22764d29ab9d7ac8c2323142 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
90 schema:familyName Aiba
91 schema:givenName Setsuya
92 rdf:type schema:Person
93 Nea42c9769ec145d794333d2e28f0eb62 rdf:first Nea813a0b00234c48b4e936a72f89d8bd
94 rdf:rest Nc03bca0bfefe4ac09a93392f76f89e25
95 Nea813a0b00234c48b4e936a72f89d8bd schema:affiliation https://www.grid.ac/institutes/grid.257016.7
96 schema:familyName Okabe
97 schema:givenName Takahiro
98 rdf:type schema:Person
99 Nffa1dfd665b84a129e1ac7bb3dca4703 rdf:first N67af865fcaf04ca7921f183285dae873
100 rdf:rest rdf:nil
101 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
102 schema:name Medical and Health Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
105 schema:name Oncology and Carcinogenesis
106 rdf:type schema:DefinedTerm
107 sg:journal.1045337 schema:issn 2045-2322
108 schema:name Scientific Reports
109 rdf:type schema:Periodical
110 sg:pub.10.1007/978-1-4684-8285-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039142765
111 https://doi.org/10.1007/978-1-4684-8285-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11864-018-0560-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105179185
114 https://doi.org/10.1007/s11864-018-0560-y
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1001/jamadermatol.2018.0212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103422554
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0738-081x(95)00073-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1022779026
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083416012
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104593387
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ijthermalsci.2010.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049945158
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1056/nejmoa1613210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085917022
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0031-9155/55/19/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028364
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0957-0233/19/7/075104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006581659
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1111/1346-8138.13629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085184782
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1111/bjd.16098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092412815
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/j.1524-4725.1981.tb00629.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038560461
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/jdv.14782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100232088
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2147/ccid.s27902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051700233
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.257016.7 schema:alternateName Hirosaki University
143 schema:name Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.482504.f schema:alternateName National Institute Of Technology
146 schema:name National Institute of Technology, Hachinohe College, Hachinohe, Japan
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
149 schema:name Graduate School of Medicine, Tohoku University, Sendai, Japan
150 Institute of Fluid Science, Tohoku University, Sendai, Japan
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...