Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, A. V. Korchuganov

ABSTRACT

Here we report on a molecular dynamics simulation of the atomic volume distribution in fcc copper with moving partial dislocations 1/6 〈112〉 {111}. The simulation shows that the leading and trailing partial dislocations surrounding a stacking fault move via local fcc→hcp and hcp→fcc transformations and that a fcc-hcp transition zone exists in which the atomic volume is larger than that in the perfect close-packed structure. The excess volume is five to seven percent, which compares with volume jumps on melting. The simulation results agree with experimental data showing that the nucleation of dislocations is preceded by the formation of regions with an excess atomic volume. More... »

PAGES

3867

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9

DOI

http://dx.doi.org/10.1038/s41598-019-40409-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112603282

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30846743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Psakhie", 
        "givenName": "S. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zolnikov", 
        "givenName": "K. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryzhevich", 
        "givenName": "D. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korchuganov", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1029959912020026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000733756", 
          "https://doi.org/10.1134/s1029959912020026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.03.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003225658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2011.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003888741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004760921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/18/1/015012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011538065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/18/1/015012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011538065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2007.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012854541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013826610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013826610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014012845", 
          "https://doi.org/10.1038/nmat1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014012845", 
          "https://doi.org/10.1038/nmat1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2005.09.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020139368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(97)00161-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020918437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023908884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.05.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025144643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.7192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026463797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.7192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026463797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-007-9368-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029988216", 
          "https://doi.org/10.1007/s11661-007-9368-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.01.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033551891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043105358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048478571", 
          "https://doi.org/10.1038/ncomms1149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048478571", 
          "https://doi.org/10.1038/ncomms1149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052309640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100303a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055663642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2067691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057837139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4972473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058099140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/16/8/027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059083498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.12627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.12627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.224106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.224106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.025502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.025502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183101001900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-017-0675-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085910281", 
          "https://doi.org/10.1007/s10409-017-0675-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-017-0675-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085910281", 
          "https://doi.org/10.1007/s10409-017-0675-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-11139-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091665655", 
          "https://doi.org/10.1038/s41598-017-11139-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/cryst7120380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099830699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.9.014023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100540870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.9.014023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100540870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-018-0077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862030", 
          "https://doi.org/10.1038/s41524-018-0077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-018-0077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862030", 
          "https://doi.org/10.1038/s41524-018-0077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-27285-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104570294", 
          "https://doi.org/10.1038/s41598-018-27285-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Here we report on a molecular dynamics simulation of the atomic volume distribution in fcc copper with moving partial dislocations 1/6 \u3008112\u3009 {111}. The simulation shows that the leading and trailing partial dislocations surrounding a stacking fault move via local fcc\u2192hcp and hcp\u2192fcc transformations and that a fcc-hcp transition zone exists in which the atomic volume is larger than that in the perfect close-packed structure. The excess volume is five to seven percent, which compares with volume jumps on melting. The simulation results agree with experimental data showing that the nucleation of dislocations is preceded by the formation of regions with an excess atomic volume.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40409-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals", 
    "pagination": "3867", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f80ff83b451aa2906ecc6575aa71e7df92a7bbf8cd017955dfa93df69bd2454"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30846743"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40409-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112603282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40409-9", 
      "https://app.dimensions.ai/details/publication/pub.1112603282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40409-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40409-9 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N019a1474971a43bd99e907ac91f3f85b
4 schema:citation sg:pub.10.1007/s10409-017-0675-6
5 sg:pub.10.1007/s11661-007-9368-2
6 sg:pub.10.1038/ncomms1149
7 sg:pub.10.1038/nmat1429
8 sg:pub.10.1038/s41524-018-0077-8
9 sg:pub.10.1038/s41598-017-11139-7
10 sg:pub.10.1038/s41598-018-27285-5
11 sg:pub.10.1134/s1029959912020026
12 https://doi.org/10.1006/jcph.1995.1039
13 https://doi.org/10.1016/j.actamat.2005.03.047
14 https://doi.org/10.1016/j.actamat.2005.08.030
15 https://doi.org/10.1016/j.actamat.2007.01.052
16 https://doi.org/10.1016/j.actamat.2014.05.052
17 https://doi.org/10.1016/j.actamat.2014.07.051
18 https://doi.org/10.1016/j.actamat.2014.11.017
19 https://doi.org/10.1016/j.actamat.2014.12.020
20 https://doi.org/10.1016/j.commatsci.2012.05.011
21 https://doi.org/10.1016/j.matlet.2011.07.037
22 https://doi.org/10.1016/j.physleta.2005.09.057
23 https://doi.org/10.1016/j.physleta.2007.03.034
24 https://doi.org/10.1016/s0378-4371(97)00161-1
25 https://doi.org/10.1021/j100303a014
26 https://doi.org/10.1063/1.2067691
27 https://doi.org/10.1063/1.4972473
28 https://doi.org/10.1088/0305-4608/16/8/027
29 https://doi.org/10.1088/0965-0393/18/1/015012
30 https://doi.org/10.1103/physrevapplied.9.014023
31 https://doi.org/10.1103/physrevb.52.12627
32 https://doi.org/10.1103/physrevb.63.224106
33 https://doi.org/10.1103/physrevb.68.174102
34 https://doi.org/10.1103/physrevb.86.064101
35 https://doi.org/10.1103/physreve.57.7192
36 https://doi.org/10.1103/physrevlett.100.025502
37 https://doi.org/10.1142/s0129183101001900
38 https://doi.org/10.3390/cryst7120380
39 schema:datePublished 2019-12
40 schema:datePublishedReg 2019-12-01
41 schema:description Here we report on a molecular dynamics simulation of the atomic volume distribution in fcc copper with moving partial dislocations 1/6 〈112〉 {111}. The simulation shows that the leading and trailing partial dislocations surrounding a stacking fault move via local fcc→hcp and hcp→fcc transformations and that a fcc-hcp transition zone exists in which the atomic volume is larger than that in the perfect close-packed structure. The excess volume is five to seven percent, which compares with volume jumps on melting. The simulation results agree with experimental data showing that the nucleation of dislocations is preceded by the formation of regions with an excess atomic volume.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N588f9eeccc254539b3f9eddbc698e637
46 N777f05d5d1704a71bcdb6ec35ece908c
47 sg:journal.1045337
48 schema:name Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals
49 schema:pagination 3867
50 schema:productId N43bf7a7397fb41c5bc8efa84169446dc
51 N51bfb55b81d64f51ae23779f6816771b
52 N65d1bed1dfdc4ceeb36adfafb93f3c0e
53 N86a3b9d6eb514400aaab06a0efde2146
54 N95bef80bc5994a789ff41e9ee6edbe2e
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112603282
56 https://doi.org/10.1038/s41598-019-40409-9
57 schema:sdDatePublished 2019-04-11T11:25
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N6831ecf6e3b547ea9451f1e5fda9e5a2
60 schema:url https://www.nature.com/articles/s41598-019-40409-9
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N006ccd41c4224e389fd1359a9d20219f schema:affiliation https://www.grid.ac/institutes/grid.467103.7
65 schema:familyName Psakhie
66 schema:givenName S. G.
67 rdf:type schema:Person
68 N019a1474971a43bd99e907ac91f3f85b rdf:first N006ccd41c4224e389fd1359a9d20219f
69 rdf:rest N6d4e090ed10d4c7e9de0cd28afb2936a
70 N43bf7a7397fb41c5bc8efa84169446dc schema:name readcube_id
71 schema:value 3f80ff83b451aa2906ecc6575aa71e7df92a7bbf8cd017955dfa93df69bd2454
72 rdf:type schema:PropertyValue
73 N51bfb55b81d64f51ae23779f6816771b schema:name pubmed_id
74 schema:value 30846743
75 rdf:type schema:PropertyValue
76 N588f9eeccc254539b3f9eddbc698e637 schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N5e95fc16af414e7e99fad962a4ce987c rdf:first Nd7268e20fff3453583a8e3bc9225dca9
79 rdf:rest Ncda05bed395b4af68bedd65a0cc57e97
80 N65d1bed1dfdc4ceeb36adfafb93f3c0e schema:name dimensions_id
81 schema:value pub.1112603282
82 rdf:type schema:PropertyValue
83 N6831ecf6e3b547ea9451f1e5fda9e5a2 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N6d4e090ed10d4c7e9de0cd28afb2936a rdf:first Nad341db654f2498eacade28e2507ef5a
86 rdf:rest N5e95fc16af414e7e99fad962a4ce987c
87 N777f05d5d1704a71bcdb6ec35ece908c schema:volumeNumber 9
88 rdf:type schema:PublicationVolume
89 N86a3b9d6eb514400aaab06a0efde2146 schema:name nlm_unique_id
90 schema:value 101563288
91 rdf:type schema:PropertyValue
92 N95bef80bc5994a789ff41e9ee6edbe2e schema:name doi
93 schema:value 10.1038/s41598-019-40409-9
94 rdf:type schema:PropertyValue
95 Nab04986c85e7478ab6f56fddf117db2d schema:affiliation https://www.grid.ac/institutes/grid.467103.7
96 schema:familyName Korchuganov
97 schema:givenName A. V.
98 rdf:type schema:Person
99 Nad341db654f2498eacade28e2507ef5a schema:affiliation https://www.grid.ac/institutes/grid.467103.7
100 schema:familyName Zolnikov
101 schema:givenName K. P.
102 rdf:type schema:Person
103 Ncda05bed395b4af68bedd65a0cc57e97 rdf:first Nab04986c85e7478ab6f56fddf117db2d
104 rdf:rest rdf:nil
105 Nd7268e20fff3453583a8e3bc9225dca9 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
106 schema:familyName Kryzhevich
107 schema:givenName D. S.
108 rdf:type schema:Person
109 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biological Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
113 schema:name Biochemistry and Cell Biology
114 rdf:type schema:DefinedTerm
115 sg:journal.1045337 schema:issn 2045-2322
116 schema:name Scientific Reports
117 rdf:type schema:Periodical
118 sg:pub.10.1007/s10409-017-0675-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085910281
119 https://doi.org/10.1007/s10409-017-0675-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11661-007-9368-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029988216
122 https://doi.org/10.1007/s11661-007-9368-2
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/ncomms1149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048478571
125 https://doi.org/10.1038/ncomms1149
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014012845
128 https://doi.org/10.1038/nmat1429
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/s41524-018-0077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101862030
131 https://doi.org/10.1038/s41524-018-0077-8
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/s41598-017-11139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091665655
134 https://doi.org/10.1038/s41598-017-11139-7
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/s41598-018-27285-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104570294
137 https://doi.org/10.1038/s41598-018-27285-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1134/s1029959912020026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000733756
140 https://doi.org/10.1134/s1029959912020026
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.actamat.2005.03.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003225658
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.actamat.2005.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023908884
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.actamat.2007.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033551891
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.actamat.2014.05.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025144643
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.actamat.2014.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043105358
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.actamat.2014.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004760921
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.actamat.2014.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051743044
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.commatsci.2012.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052309640
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.matlet.2011.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003888741
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.physleta.2005.09.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020139368
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physleta.2007.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012854541
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0378-4371(97)00161-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020918437
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/j100303a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055663642
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.2067691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057837139
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.4972473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099140
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0305-4608/16/8/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059083498
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0965-0393/18/1/015012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011538065
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevapplied.9.014023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100540870
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.52.12627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060577334
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.63.224106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599832
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.68.174102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013826610
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.86.064101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639619
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.57.7192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026463797
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.100.025502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752678
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1142/s0129183101001900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903873
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3390/cryst7120380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099830699
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
197 schema:name Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...