Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, A. V. Korchuganov

ABSTRACT

Here we report on a molecular dynamics simulation of the atomic volume distribution in fcc copper with moving partial dislocations 1/6 〈112〉 {111}. The simulation shows that the leading and trailing partial dislocations surrounding a stacking fault move via local fcc→hcp and hcp→fcc transformations and that a fcc-hcp transition zone exists in which the atomic volume is larger than that in the perfect close-packed structure. The excess volume is five to seven percent, which compares with volume jumps on melting. The simulation results agree with experimental data showing that the nucleation of dislocations is preceded by the formation of regions with an excess atomic volume. More... »

PAGES

3867

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9

DOI

http://dx.doi.org/10.1038/s41598-019-40409-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112603282

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30846743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Psakhie", 
        "givenName": "S. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zolnikov", 
        "givenName": "K. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryzhevich", 
        "givenName": "D. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korchuganov", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1029959912020026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000733756", 
          "https://doi.org/10.1134/s1029959912020026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.03.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003225658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2011.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003888741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004760921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/18/1/015012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011538065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/18/1/015012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011538065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2007.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012854541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013826610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013826610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014012845", 
          "https://doi.org/10.1038/nmat1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014012845", 
          "https://doi.org/10.1038/nmat1429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2005.09.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020139368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(97)00161-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020918437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023908884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.05.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025144643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.7192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026463797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.7192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026463797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-007-9368-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029988216", 
          "https://doi.org/10.1007/s11661-007-9368-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.01.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033551891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043105358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048478571", 
          "https://doi.org/10.1038/ncomms1149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048478571", 
          "https://doi.org/10.1038/ncomms1149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052309640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100303a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055663642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2067691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057837139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4972473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058099140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/16/8/027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059083498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.12627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.12627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.224106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.224106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.025502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.025502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183101001900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-017-0675-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085910281", 
          "https://doi.org/10.1007/s10409-017-0675-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-017-0675-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085910281", 
          "https://doi.org/10.1007/s10409-017-0675-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-11139-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091665655", 
          "https://doi.org/10.1038/s41598-017-11139-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/cryst7120380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099830699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.9.014023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100540870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.9.014023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100540870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-018-0077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862030", 
          "https://doi.org/10.1038/s41524-018-0077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-018-0077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862030", 
          "https://doi.org/10.1038/s41524-018-0077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-27285-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104570294", 
          "https://doi.org/10.1038/s41598-018-27285-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Here we report on a molecular dynamics simulation of the atomic volume distribution in fcc copper with moving partial dislocations 1/6 \u3008112\u3009 {111}. The simulation shows that the leading and trailing partial dislocations surrounding a stacking fault move via local fcc\u2192hcp and hcp\u2192fcc transformations and that a fcc-hcp transition zone exists in which the atomic volume is larger than that in the perfect close-packed structure. The excess volume is five to seven percent, which compares with volume jumps on melting. The simulation results agree with experimental data showing that the nucleation of dislocations is preceded by the formation of regions with an excess atomic volume.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40409-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals", 
    "pagination": "3867", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f80ff83b451aa2906ecc6575aa71e7df92a7bbf8cd017955dfa93df69bd2454"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30846743"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40409-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112603282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40409-9", 
      "https://app.dimensions.ai/details/publication/pub.1112603282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40409-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40409-9'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40409-9 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Naba98a06248e400b94e81000e582eec2
4 schema:citation sg:pub.10.1007/s10409-017-0675-6
5 sg:pub.10.1007/s11661-007-9368-2
6 sg:pub.10.1038/ncomms1149
7 sg:pub.10.1038/nmat1429
8 sg:pub.10.1038/s41524-018-0077-8
9 sg:pub.10.1038/s41598-017-11139-7
10 sg:pub.10.1038/s41598-018-27285-5
11 sg:pub.10.1134/s1029959912020026
12 https://doi.org/10.1006/jcph.1995.1039
13 https://doi.org/10.1016/j.actamat.2005.03.047
14 https://doi.org/10.1016/j.actamat.2005.08.030
15 https://doi.org/10.1016/j.actamat.2007.01.052
16 https://doi.org/10.1016/j.actamat.2014.05.052
17 https://doi.org/10.1016/j.actamat.2014.07.051
18 https://doi.org/10.1016/j.actamat.2014.11.017
19 https://doi.org/10.1016/j.actamat.2014.12.020
20 https://doi.org/10.1016/j.commatsci.2012.05.011
21 https://doi.org/10.1016/j.matlet.2011.07.037
22 https://doi.org/10.1016/j.physleta.2005.09.057
23 https://doi.org/10.1016/j.physleta.2007.03.034
24 https://doi.org/10.1016/s0378-4371(97)00161-1
25 https://doi.org/10.1021/j100303a014
26 https://doi.org/10.1063/1.2067691
27 https://doi.org/10.1063/1.4972473
28 https://doi.org/10.1088/0305-4608/16/8/027
29 https://doi.org/10.1088/0965-0393/18/1/015012
30 https://doi.org/10.1103/physrevapplied.9.014023
31 https://doi.org/10.1103/physrevb.52.12627
32 https://doi.org/10.1103/physrevb.63.224106
33 https://doi.org/10.1103/physrevb.68.174102
34 https://doi.org/10.1103/physrevb.86.064101
35 https://doi.org/10.1103/physreve.57.7192
36 https://doi.org/10.1103/physrevlett.100.025502
37 https://doi.org/10.1142/s0129183101001900
38 https://doi.org/10.3390/cryst7120380
39 schema:datePublished 2019-12
40 schema:datePublishedReg 2019-12-01
41 schema:description Here we report on a molecular dynamics simulation of the atomic volume distribution in fcc copper with moving partial dislocations 1/6 〈112〉 {111}. The simulation shows that the leading and trailing partial dislocations surrounding a stacking fault move via local fcc→hcp and hcp→fcc transformations and that a fcc-hcp transition zone exists in which the atomic volume is larger than that in the perfect close-packed structure. The excess volume is five to seven percent, which compares with volume jumps on melting. The simulation results agree with experimental data showing that the nucleation of dislocations is preceded by the formation of regions with an excess atomic volume.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N13b2f9ca946d4174bf0787d584f18e53
46 N43a071edd04c4711a60e4e1b2b3bb61c
47 sg:journal.1045337
48 schema:name Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals
49 schema:pagination 3867
50 schema:productId N09bd589841114c338df2278e991539e3
51 N0a4316562818457a8706085aea02b2c0
52 N43ad3f0f81b94780a54adb9fd54b447e
53 N6ef4f413c85147d39d03dc9babb65ea2
54 Nf9760f4496924fc298a1ef91c3daf8bf
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112603282
56 https://doi.org/10.1038/s41598-019-40409-9
57 schema:sdDatePublished 2019-04-11T11:25
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nb188b51f36cf4034ac1d3d1ec7d581db
60 schema:url https://www.nature.com/articles/s41598-019-40409-9
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N09bd589841114c338df2278e991539e3 schema:name pubmed_id
65 schema:value 30846743
66 rdf:type schema:PropertyValue
67 N0a4316562818457a8706085aea02b2c0 schema:name doi
68 schema:value 10.1038/s41598-019-40409-9
69 rdf:type schema:PropertyValue
70 N13b2f9ca946d4174bf0787d584f18e53 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N4132f6ef7ba04cf4b7d42ab389466cb4 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
73 schema:familyName Kryzhevich
74 schema:givenName D. S.
75 rdf:type schema:Person
76 N43a071edd04c4711a60e4e1b2b3bb61c schema:volumeNumber 9
77 rdf:type schema:PublicationVolume
78 N43ad3f0f81b94780a54adb9fd54b447e schema:name readcube_id
79 schema:value 3f80ff83b451aa2906ecc6575aa71e7df92a7bbf8cd017955dfa93df69bd2454
80 rdf:type schema:PropertyValue
81 N6ef4f413c85147d39d03dc9babb65ea2 schema:name dimensions_id
82 schema:value pub.1112603282
83 rdf:type schema:PropertyValue
84 N70d34ddee8c84f7f8ec8b0b6bc2a4fdd rdf:first Nc1aba8fbf753434aabf4b3fbb19dd7dd
85 rdf:rest Nd7857452c4b2461f8a62bc47cfaf972a
86 Na44f3f232aa84681b1f4c7eae48cdcfe schema:affiliation https://www.grid.ac/institutes/grid.467103.7
87 schema:familyName Psakhie
88 schema:givenName S. G.
89 rdf:type schema:Person
90 Naba98a06248e400b94e81000e582eec2 rdf:first Na44f3f232aa84681b1f4c7eae48cdcfe
91 rdf:rest N70d34ddee8c84f7f8ec8b0b6bc2a4fdd
92 Nb188b51f36cf4034ac1d3d1ec7d581db schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nb4c3f3f0d5564f4093cee47db91ecffe rdf:first Nf73f7f8768084ec08e17a864af041506
95 rdf:rest rdf:nil
96 Nc1aba8fbf753434aabf4b3fbb19dd7dd schema:affiliation https://www.grid.ac/institutes/grid.467103.7
97 schema:familyName Zolnikov
98 schema:givenName K. P.
99 rdf:type schema:Person
100 Nd7857452c4b2461f8a62bc47cfaf972a rdf:first N4132f6ef7ba04cf4b7d42ab389466cb4
101 rdf:rest Nb4c3f3f0d5564f4093cee47db91ecffe
102 Nf73f7f8768084ec08e17a864af041506 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
103 schema:familyName Korchuganov
104 schema:givenName A. V.
105 rdf:type schema:Person
106 Nf9760f4496924fc298a1ef91c3daf8bf schema:name nlm_unique_id
107 schema:value 101563288
108 rdf:type schema:PropertyValue
109 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biological Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
113 schema:name Biochemistry and Cell Biology
114 rdf:type schema:DefinedTerm
115 sg:journal.1045337 schema:issn 2045-2322
116 schema:name Scientific Reports
117 rdf:type schema:Periodical
118 sg:pub.10.1007/s10409-017-0675-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085910281
119 https://doi.org/10.1007/s10409-017-0675-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11661-007-9368-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029988216
122 https://doi.org/10.1007/s11661-007-9368-2
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/ncomms1149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048478571
125 https://doi.org/10.1038/ncomms1149
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014012845
128 https://doi.org/10.1038/nmat1429
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/s41524-018-0077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101862030
131 https://doi.org/10.1038/s41524-018-0077-8
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/s41598-017-11139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091665655
134 https://doi.org/10.1038/s41598-017-11139-7
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/s41598-018-27285-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104570294
137 https://doi.org/10.1038/s41598-018-27285-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1134/s1029959912020026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000733756
140 https://doi.org/10.1134/s1029959912020026
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.actamat.2005.03.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003225658
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.actamat.2005.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023908884
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.actamat.2007.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033551891
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.actamat.2014.05.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025144643
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.actamat.2014.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043105358
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.actamat.2014.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004760921
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.actamat.2014.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051743044
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.commatsci.2012.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052309640
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.matlet.2011.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003888741
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.physleta.2005.09.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020139368
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physleta.2007.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012854541
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0378-4371(97)00161-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020918437
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/j100303a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055663642
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.2067691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057837139
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.4972473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099140
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0305-4608/16/8/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059083498
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0965-0393/18/1/015012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011538065
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevapplied.9.014023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100540870
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.52.12627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060577334
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.63.224106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599832
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.68.174102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013826610
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.86.064101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639619
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.57.7192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026463797
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.100.025502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752678
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1142/s0129183101001900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903873
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3390/cryst7120380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099830699
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
197 schema:name Institute of Strength Physics and Materials Science SB RAS, 634055, Tomsk, Russia
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...