A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ahmed E. Fetit, Alexander S. Doney, Stephen Hogg, Ruixuan Wang, Tom MacGillivray, Joanna M. Wardlaw, Fergus N. Doubal, Gareth J. McKay, Stephen McKenna, Emanuele Trucco

ABSTRACT

Cardiovascular diseases are a public health concern; they remain the leading cause of morbidity and mortality in patients with type 2 diabetes. Phenotypic information available from retinal fundus images and clinical measurements, in addition to genomic data, can identify relevant biomarkers of cardiovascular health. In this study, we assessed whether such biomarkers stratified risks of major adverse cardiac events (MACE). A retrospective analysis was carried out on an extract from the Tayside GoDARTS bioresource of participants with type 2 diabetes (n = 3,891). A total of 519 features were incorporated, summarising morphometric properties of the retinal vasculature, various single nucleotide polymorphisms (SNPs), as well as routine clinical measurements. After imputing missing features, a predictive model was developed on a randomly sampled set (n = 2,918) using L1-regularised logistic regression (lasso). The model was evaluated on an independent set (n = 973) and its performance associated with overall hazard rate after censoring (log-rank p < 0.0001), suggesting that multimodal features were able to capture important knowledge for MACE risk assessment. We further showed through a bootstrap analysis that all three sources of information (retinal, genetic, routine clinical) offer robust signal. Particularly robust features included: tortuousity, width gradient, and branching point retinal groupings; SNPs known to be associated with blood pressure and cardiovascular phenotypic traits; age at imaging; clinical measurements such as blood pressure and high density lipoprotein. This novel approach could be used for fast and sensitive determination of future risks associated with MACE. More... »

PAGES

3591

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40403-1

DOI

http://dx.doi.org/10.1038/s41598-019-40403-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544120

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30837638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Dundee", 
          "id": "https://www.grid.ac/institutes/grid.8241.f", 
          "name": [
            "VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing), University of Dundee, Dundee, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fetit", 
        "givenName": "Ahmed E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doney", 
        "givenName": "Alexander S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Dundee", 
          "id": "https://www.grid.ac/institutes/grid.8241.f", 
          "name": [
            "VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing), University of Dundee, Dundee, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hogg", 
        "givenName": "Stephen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Dundee", 
          "id": "https://www.grid.ac/institutes/grid.8241.f", 
          "name": [
            "VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing), University of Dundee, Dundee, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ruixuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "VAMPIRE project, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacGillivray", 
        "givenName": "Tom", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wardlaw", 
        "givenName": "Joanna M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doubal", 
        "givenName": "Fergus N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's University Belfast", 
          "id": "https://www.grid.ac/institutes/grid.4777.3", 
          "name": [
            "Centre for Public Health, Queen\u2019s University Belfast, Belfast, Northern Ireland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKay", 
        "givenName": "Gareth J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Dundee", 
          "id": "https://www.grid.ac/institutes/grid.8241.f", 
          "name": [
            "VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing), University of Dundee, Dundee, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKenna", 
        "givenName": "Stephen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Dundee", 
          "id": "https://www.grid.ac/institutes/grid.8241.f", 
          "name": [
            "VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing), University of Dundee, Dundee, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trucco", 
        "givenName": "Emanuele", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/bmj.328.7447.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001963342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxm010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002753828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3002564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003389409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehm221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006185886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.166.21.2388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007865756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/6259047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016817787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.03-1390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020547482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031397264", 
          "https://doi.org/10.1038/ng.2802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031397264", 
          "https://doi.org/10.1038/ng.2802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0065736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032338427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1001779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033632930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034378235", 
          "https://doi.org/10.1038/ng.3396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680900300315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042138685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680900300315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042138685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0127914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050500726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0161-6420(99)90525-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051396307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0161-6420(99)90525-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051396307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059415170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-151-6-200909150-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073711027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074248255", 
          "https://doi.org/10.1038/ng.3768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074248255", 
          "https://doi.org/10.1038/ng.3768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6090918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078503058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1740-9713.2017.01012.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084606969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2017.03.265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084748627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.preteyeres.2017.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085144009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyx140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090564017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyx140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090564017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/brc.2013.6487552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093675513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41551-018-0195-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101086644", 
          "https://doi.org/10.1038/s41551-018-0195-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41551-018-0195-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101086644", 
          "https://doi.org/10.1038/s41551-018-0195-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-22360-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101225878", 
          "https://doi.org/10.1038/s41598-018-22360-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-22360-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101225878", 
          "https://doi.org/10.1038/s41598-018-22360-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/tvst.7.2.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101817345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Cardiovascular diseases are a public health concern; they remain the leading cause of morbidity and mortality in patients with type 2 diabetes. Phenotypic information available from retinal fundus images and clinical measurements, in addition to genomic data, can identify relevant biomarkers of cardiovascular health. In this study, we assessed whether such biomarkers stratified risks of major adverse cardiac events (MACE). A retrospective analysis was carried out on an extract from the Tayside GoDARTS bioresource of participants with type 2 diabetes (n\u2009=\u20093,891). A total of 519 features were incorporated, summarising morphometric properties of the retinal vasculature, various single nucleotide polymorphisms (SNPs), as well as routine clinical measurements. After imputing missing features, a predictive model was developed on a randomly sampled set (n\u2009=\u20092,918) using L1-regularised logistic regression (lasso). The model was evaluated on an independent set (n\u2009=\u2009973) and its performance associated with overall hazard rate after censoring (log-rank p\u2009<\u20090.0001), suggesting that multimodal features were able to capture important knowledge for MACE risk assessment. We further showed through a bootstrap analysis that all three sources of information (retinal, genetic, routine clinical) offer robust signal. Particularly robust features included: tortuousity, width gradient, and branching point retinal groupings; SNPs known to be associated with blood pressure and cardiovascular phenotypic traits; age at imaging; clinical measurements such as blood pressure and high density lipoprotein. This novel approach could be used for fast and sensitive determination of future risks associated with MACE.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40403-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2777203", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3956322", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features", 
    "pagination": "3591", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64dc552d7b168463a2f3f66bd9c4acbdbb8e10ac295685a487211420b730be96"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30837638"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40403-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40403-1", 
      "https://app.dimensions.ai/details/publication/pub.1112544120"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40403-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40403-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40403-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40403-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40403-1'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40403-1 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N9774b100371e4e02b3f4d678cb7dbe03
4 schema:citation sg:pub.10.1038/ng.2802
5 sg:pub.10.1038/ng.3396
6 sg:pub.10.1038/ng.3768
7 sg:pub.10.1038/s41551-018-0195-0
8 sg:pub.10.1038/s41598-018-22360-3
9 https://doi.org/10.1001/archinte.166.21.2388
10 https://doi.org/10.1016/j.amjcard.2017.03.265
11 https://doi.org/10.1016/j.preteyeres.2017.04.003
12 https://doi.org/10.1016/s0161-6420(99)90525-0
13 https://doi.org/10.1093/bioinformatics/btw807
14 https://doi.org/10.1093/biostatistics/kxm010
15 https://doi.org/10.1093/eurheartj/ehm221
16 https://doi.org/10.1093/ije/dyx140
17 https://doi.org/10.1109/brc.2013.6487552
18 https://doi.org/10.1109/iembs.2011.6090918
19 https://doi.org/10.1111/j.1740-9713.2017.01012.x
20 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
21 https://doi.org/10.1126/scitranslmed.3002564
22 https://doi.org/10.1136/bmj.328.7447.1073
23 https://doi.org/10.1155/2016/6259047
24 https://doi.org/10.1167/iovs.03-1390
25 https://doi.org/10.1167/tvst.7.2.12
26 https://doi.org/10.1177/193229680900300315
27 https://doi.org/10.1371/journal.pmed.1001779
28 https://doi.org/10.1371/journal.pone.0065736
29 https://doi.org/10.1371/journal.pone.0127914
30 https://doi.org/10.18637/jss.v033.i01
31 https://doi.org/10.7326/0003-4819-151-6-200909150-00005
32 schema:datePublished 2019-12
33 schema:datePublishedReg 2019-12-01
34 schema:description Cardiovascular diseases are a public health concern; they remain the leading cause of morbidity and mortality in patients with type 2 diabetes. Phenotypic information available from retinal fundus images and clinical measurements, in addition to genomic data, can identify relevant biomarkers of cardiovascular health. In this study, we assessed whether such biomarkers stratified risks of major adverse cardiac events (MACE). A retrospective analysis was carried out on an extract from the Tayside GoDARTS bioresource of participants with type 2 diabetes (n = 3,891). A total of 519 features were incorporated, summarising morphometric properties of the retinal vasculature, various single nucleotide polymorphisms (SNPs), as well as routine clinical measurements. After imputing missing features, a predictive model was developed on a randomly sampled set (n = 2,918) using L1-regularised logistic regression (lasso). The model was evaluated on an independent set (n = 973) and its performance associated with overall hazard rate after censoring (log-rank p < 0.0001), suggesting that multimodal features were able to capture important knowledge for MACE risk assessment. We further showed through a bootstrap analysis that all three sources of information (retinal, genetic, routine clinical) offer robust signal. Particularly robust features included: tortuousity, width gradient, and branching point retinal groupings; SNPs known to be associated with blood pressure and cardiovascular phenotypic traits; age at imaging; clinical measurements such as blood pressure and high density lipoprotein. This novel approach could be used for fast and sensitive determination of future risks associated with MACE.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N13e37dd8d95a42538b87d459df7cc811
39 N78fdcf2afbf74cd6ba86211b53e773ea
40 sg:journal.1045337
41 schema:name A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features
42 schema:pagination 3591
43 schema:productId N3ef19306a66746d89889d642172368bb
44 N66550c524fe341c1b79aa9ae50a65201
45 N80acd902177b4674b696fa6632e78a2a
46 N8d35bfadce484b6784a5cb66f77aeca2
47 Na24fbac2a0b34e0bb511f2b0d2d56495
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544120
49 https://doi.org/10.1038/s41598-019-40403-1
50 schema:sdDatePublished 2019-04-11T13:19
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N3265e4384fdb436d9bfa8ae4f0a42bf6
53 schema:url https://www.nature.com/articles/s41598-019-40403-1
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N001d68626d0c4920b3586de393c518e0 rdf:first Naa6437b8e055424c9e0f4e832c0b36bf
58 rdf:rest N8edeeeef669a4fa884f3610017921cd1
59 N00412222c1a04297859d4cae311b9324 rdf:first N95f93ce4a06d44d2b830b40ddaa383e0
60 rdf:rest rdf:nil
61 N0ba6f34a687b4d31823803aa5bd697c1 schema:name Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
62 rdf:type schema:Organization
63 N13e37dd8d95a42538b87d459df7cc811 schema:volumeNumber 9
64 rdf:type schema:PublicationVolume
65 N23952de89567416bada2b3b6f288d532 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
66 schema:familyName Doubal
67 schema:givenName Fergus N.
68 rdf:type schema:Person
69 N3265e4384fdb436d9bfa8ae4f0a42bf6 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N32b1bcaf91bf4533a74ae8c076508ff2 schema:affiliation https://www.grid.ac/institutes/grid.4777.3
72 schema:familyName McKay
73 schema:givenName Gareth J.
74 rdf:type schema:Person
75 N3546a36e52c44555beb526b1f91889bb rdf:first N23952de89567416bada2b3b6f288d532
76 rdf:rest Nf53e53269f2c45c1938c9e38892d03d4
77 N383f95d0d9de4066a22691b3b526309e schema:affiliation https://www.grid.ac/institutes/grid.8241.f
78 schema:familyName Fetit
79 schema:givenName Ahmed E.
80 rdf:type schema:Person
81 N3915b6ae43e64b6e82c53800b9d806de rdf:first N3e5fda9e28264f6bb39bbe645628d965
82 rdf:rest Na00bb0b508ce43d8bdaccb3530524dc4
83 N3e5fda9e28264f6bb39bbe645628d965 schema:affiliation N0ba6f34a687b4d31823803aa5bd697c1
84 schema:familyName Doney
85 schema:givenName Alexander S.
86 rdf:type schema:Person
87 N3ef19306a66746d89889d642172368bb schema:name readcube_id
88 schema:value 64dc552d7b168463a2f3f66bd9c4acbdbb8e10ac295685a487211420b730be96
89 rdf:type schema:PropertyValue
90 N66550c524fe341c1b79aa9ae50a65201 schema:name dimensions_id
91 schema:value pub.1112544120
92 rdf:type schema:PropertyValue
93 N78fdcf2afbf74cd6ba86211b53e773ea schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N80acd902177b4674b696fa6632e78a2a schema:name doi
96 schema:value 10.1038/s41598-019-40403-1
97 rdf:type schema:PropertyValue
98 N8b357655038c4a08a86bfaf38471e20b schema:affiliation https://www.grid.ac/institutes/grid.8241.f
99 schema:familyName Hogg
100 schema:givenName Stephen
101 rdf:type schema:Person
102 N8d35bfadce484b6784a5cb66f77aeca2 schema:name nlm_unique_id
103 schema:value 101563288
104 rdf:type schema:PropertyValue
105 N8edeeeef669a4fa884f3610017921cd1 rdf:first Nbbfc8ed6d2794efda09acbfaabba7103
106 rdf:rest Nb6d8cfa7b850443eb6e49748f1b2b270
107 N91b30db0795e4cdb8afb70ed6a1ce09a rdf:first N9f52def62bae433695ed688b71f8ebed
108 rdf:rest N00412222c1a04297859d4cae311b9324
109 N95f93ce4a06d44d2b830b40ddaa383e0 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
110 schema:familyName Trucco
111 schema:givenName Emanuele
112 rdf:type schema:Person
113 N9774b100371e4e02b3f4d678cb7dbe03 rdf:first N383f95d0d9de4066a22691b3b526309e
114 rdf:rest N3915b6ae43e64b6e82c53800b9d806de
115 N9f52def62bae433695ed688b71f8ebed schema:affiliation https://www.grid.ac/institutes/grid.8241.f
116 schema:familyName McKenna
117 schema:givenName Stephen
118 rdf:type schema:Person
119 Na00bb0b508ce43d8bdaccb3530524dc4 rdf:first N8b357655038c4a08a86bfaf38471e20b
120 rdf:rest N001d68626d0c4920b3586de393c518e0
121 Na24fbac2a0b34e0bb511f2b0d2d56495 schema:name pubmed_id
122 schema:value 30837638
123 rdf:type schema:PropertyValue
124 Naa6437b8e055424c9e0f4e832c0b36bf schema:affiliation https://www.grid.ac/institutes/grid.8241.f
125 schema:familyName Wang
126 schema:givenName Ruixuan
127 rdf:type schema:Person
128 Nb6d8cfa7b850443eb6e49748f1b2b270 rdf:first Nf97e280a36c24cc3bd19ca965c350ae0
129 rdf:rest N3546a36e52c44555beb526b1f91889bb
130 Nbbfc8ed6d2794efda09acbfaabba7103 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
131 schema:familyName MacGillivray
132 schema:givenName Tom
133 rdf:type schema:Person
134 Nf53e53269f2c45c1938c9e38892d03d4 rdf:first N32b1bcaf91bf4533a74ae8c076508ff2
135 rdf:rest N91b30db0795e4cdb8afb70ed6a1ce09a
136 Nf97e280a36c24cc3bd19ca965c350ae0 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
137 schema:familyName Wardlaw
138 schema:givenName Joanna M.
139 rdf:type schema:Person
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
144 schema:name Cardiorespiratory Medicine and Haematology
145 rdf:type schema:DefinedTerm
146 sg:grant.2777203 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40403-1
147 rdf:type schema:MonetaryGrant
148 sg:grant.3956322 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40403-1
149 rdf:type schema:MonetaryGrant
150 sg:journal.1045337 schema:issn 2045-2322
151 schema:name Scientific Reports
152 rdf:type schema:Periodical
153 sg:pub.10.1038/ng.2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031397264
154 https://doi.org/10.1038/ng.2802
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/ng.3396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034378235
157 https://doi.org/10.1038/ng.3396
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ng.3768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074248255
160 https://doi.org/10.1038/ng.3768
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/s41551-018-0195-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101086644
163 https://doi.org/10.1038/s41551-018-0195-0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/s41598-018-22360-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101225878
166 https://doi.org/10.1038/s41598-018-22360-3
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1001/archinte.166.21.2388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007865756
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.amjcard.2017.03.265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084748627
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.preteyeres.2017.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085144009
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0161-6420(99)90525-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051396307
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/bioinformatics/btw807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059415170
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/biostatistics/kxm010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002753828
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/eurheartj/ehm221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006185886
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/ije/dyx140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090564017
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/brc.2013.6487552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093675513
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/iembs.2011.6090918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078503058
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/j.1740-9713.2017.01012.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084606969
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458978
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/scitranslmed.3002564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003389409
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1136/bmj.328.7447.1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001963342
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1155/2016/6259047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016817787
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1167/iovs.03-1390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020547482
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1167/tvst.7.2.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101817345
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1177/193229680900300315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042138685
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1371/journal.pmed.1001779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033632930
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1371/journal.pone.0065736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032338427
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1371/journal.pone.0127914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050500726
209 rdf:type schema:CreativeWork
210 https://doi.org/10.18637/jss.v033.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672496
211 rdf:type schema:CreativeWork
212 https://doi.org/10.7326/0003-4819-151-6-200909150-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073711027
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
215 schema:name Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
216 VAMPIRE project, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.4777.3 schema:alternateName Queen's University Belfast
219 schema:name Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.8241.f schema:alternateName University of Dundee
222 schema:name VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing), University of Dundee, Dundee, Scotland, United Kingdom
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...