Silver nanowires with optimized silica coating as versatile plasmonic resonators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Martin Rothe, Yuhang Zhao, Günter Kewes, Zdravko Kochovski, Wilfried Sigle, Peter A. van Aken, Christoph Koch, Matthias Ballauff, Yan Lu, Oliver Benson

ABSTRACT

Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stöber method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems. More... »

PAGES

3859

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40380-5

DOI

http://dx.doi.org/10.1038/s41598-019-40380-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112603421

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30846736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Humboldt Universit\u00e4t zu Berlin & IRIS Adlershof, Nanooptics, Newtonstra\u00dfe 15, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rothe", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Berlin", 
          "id": "https://www.grid.ac/institutes/grid.424048.e", 
          "name": [
            "Helmholtz Zentrum Berlin f\u00fcr Materialien und Energie, Institute of Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, 14109, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yuhang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Humboldt Universit\u00e4t zu Berlin & IRIS Adlershof, Nanooptics, Newtonstra\u00dfe 15, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kewes", 
        "givenName": "G\u00fcnter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Berlin", 
          "id": "https://www.grid.ac/institutes/grid.424048.e", 
          "name": [
            "Helmholtz Zentrum Berlin f\u00fcr Materialien und Energie, Institute of Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, 14109, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kochovski", 
        "givenName": "Zdravko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sigle", 
        "givenName": "Wilfried", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Aken", 
        "givenName": "Peter A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Humboldt Universit\u00e4t zu Berlin & IRIS Adlershof, Structure Research and Electron Microscopy, Newtonstra\u00dfe 15, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koch", 
        "givenName": "Christoph", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Helmholtz Zentrum Berlin f\u00fcr Materialien und Energie, Institute of Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, 14109, Berlin, Germany", 
            "Humboldt Universit\u00e4t zu Berlin, Department of Physics, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ballauff", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Potsdam", 
          "id": "https://www.grid.ac/institutes/grid.11348.3f", 
          "name": [
            "Helmholtz Zentrum Berlin f\u00fcr Materialien und Energie, Institute of Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, 14109, Berlin, Germany", 
            "Institute of Chemistry, University of Potsdam, 14467, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Humboldt Universit\u00e4t zu Berlin & IRIS Adlershof, Nanooptics, Newtonstra\u00dfe 15, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benson", 
        "givenName": "Oliver", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000412927", 
          "https://doi.org/10.1038/nphys708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000672253", 
          "https://doi.org/10.1038/nphoton.2014.239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002908419", 
          "https://doi.org/10.1038/nature08364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034312m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003215060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034312m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003215060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/78/1/013901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003500368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947781", 
          "https://doi.org/10.1038/nphoton.2009.282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947781", 
          "https://doi.org/10.1038/nphoton.2009.282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2010.01.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010077843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2005.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010369021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2014.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013473413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013655144", 
          "https://doi.org/10.1038/nature08907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013655144", 
          "https://doi.org/10.1038/nature08907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ta10495h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013944107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep28877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017539088", 
          "https://doi.org/10.1038/srep28877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.015152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019109845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020420660", 
          "https://doi.org/10.1038/nphoton.2008.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lpor.201200003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021308222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(68)90272-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024238085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026730155", 
          "https://doi.org/10.1038/nphoton.2010.237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ra01162j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028994184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2015.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031562376", 
          "https://doi.org/10.1038/lsa.2015.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200802248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033005548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp990992z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033801924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp990992z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033801924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.257403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037030744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.257403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037030744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026731y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039003927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026731y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039003927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403690", 
          "https://doi.org/10.1038/nnano.2014.311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl010093y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042032170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl010093y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042032170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl071763o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043753860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl071763o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043753860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045886981", 
          "https://doi.org/10.1038/nmat2630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045886981", 
          "https://doi.org/10.1038/nmat2630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(85)90304-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046704357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2014.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047841460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.201046197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048074185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.201046197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048074185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.201046197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048074185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm020587b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048953803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm020587b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048953803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lpor.201300028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050525253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051042161", 
          "https://doi.org/10.1038/nnano.2014.135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b04659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055122029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja074705d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055845632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja074705d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055845632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp073853n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056072673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp073853n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056072673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz900366c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056136144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz900366c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056136144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la010736p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056142747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la010736p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056142747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025508+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025508+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103834y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103834y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.443196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058021221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4790824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058069215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/1/015002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.066801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.066801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.136802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.136802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.720227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061149427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.22.001831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-physchem-052516-050730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083398570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b12748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083549998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.237402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085973485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.237402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085973485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.7b00292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086000486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ome.7.002586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090246477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.7b00526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091963069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471213748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471213748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.8b00766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106987004"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70\u2009nm in diameter. These nanowires are coated with nm-sized silica shells using a modified St\u00f6ber method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40380-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4813146", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Silver nanowires with optimized silica coating as versatile plasmonic resonators", 
    "pagination": "3859", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a6f4d371a5ff0e90be83fb74833271dab4034470af142966644aa6996b96707"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30846736"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40380-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112603421"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40380-5", 
      "https://app.dimensions.ai/details/publication/pub.1112603421"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57900_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40380-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40380-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40380-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40380-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40380-5'


 

This table displays all metadata directly associated to this object as RDF triples.

320 TRIPLES      21 PREDICATES      86 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40380-5 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Ne4d66b2e903d445e8c51d140f230ec4d
4 schema:citation sg:pub.10.1038/lsa.2015.67
5 sg:pub.10.1038/nature01937
6 sg:pub.10.1038/nature08364
7 sg:pub.10.1038/nature08907
8 sg:pub.10.1038/nmat2630
9 sg:pub.10.1038/nnano.2014.135
10 sg:pub.10.1038/nnano.2014.311
11 sg:pub.10.1038/nphoton.2008.131
12 sg:pub.10.1038/nphoton.2009.282
13 sg:pub.10.1038/nphoton.2010.237
14 sg:pub.10.1038/nphoton.2014.239
15 sg:pub.10.1038/nphys708
16 sg:pub.10.1038/srep28877
17 https://doi.org/10.1002/0471213748
18 https://doi.org/10.1002/anie.200802248
19 https://doi.org/10.1002/lpor.201200003
20 https://doi.org/10.1002/lpor.201300028
21 https://doi.org/10.1002/pssb.201046197
22 https://doi.org/10.1016/0021-9797(68)90272-5
23 https://doi.org/10.1016/0021-9797(85)90304-2
24 https://doi.org/10.1016/j.compscitech.2014.10.002
25 https://doi.org/10.1016/j.optcom.2010.01.061
26 https://doi.org/10.1016/j.solmat.2014.05.013
27 https://doi.org/10.1016/j.talanta.2005.06.020
28 https://doi.org/10.1021/acs.jpcc.6b12748
29 https://doi.org/10.1021/acs.nanolett.6b04659
30 https://doi.org/10.1021/acsphotonics.7b00292
31 https://doi.org/10.1021/acsphotonics.7b00526
32 https://doi.org/10.1021/acsphotonics.8b00766
33 https://doi.org/10.1021/cm020587b
34 https://doi.org/10.1021/ja074705d
35 https://doi.org/10.1021/jp026731y
36 https://doi.org/10.1021/jp073853n
37 https://doi.org/10.1021/jp990992z
38 https://doi.org/10.1021/jz900366c
39 https://doi.org/10.1021/la010736p
40 https://doi.org/10.1021/nl010093y
41 https://doi.org/10.1021/nl025508+
42 https://doi.org/10.1021/nl034312m
43 https://doi.org/10.1021/nl071763o
44 https://doi.org/10.1021/nl103834y
45 https://doi.org/10.1039/c2ra01162j
46 https://doi.org/10.1039/c3ta10495h
47 https://doi.org/10.1063/1.443196
48 https://doi.org/10.1063/1.4790824
49 https://doi.org/10.1088/0034-4885/78/1/013901
50 https://doi.org/10.1088/1367-2630/11/1/015002
51 https://doi.org/10.1103/physrevb.6.4370
52 https://doi.org/10.1103/physrevlett.110.066801
53 https://doi.org/10.1103/physrevlett.118.237402
54 https://doi.org/10.1103/physrevlett.95.257403
55 https://doi.org/10.1103/physrevlett.99.136802
56 https://doi.org/10.1109/3.720227
57 https://doi.org/10.1146/annurev-physchem-052516-050730
58 https://doi.org/10.1364/oe.23.015152
59 https://doi.org/10.1364/ol.22.001831
60 https://doi.org/10.1364/ome.7.002586
61 schema:datePublished 2019-12
62 schema:datePublishedReg 2019-12-01
63 schema:description Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stöber method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree true
67 schema:isPartOf N0811805af2864480a0f4b98dedc9989b
68 N8e286156476b405a83d19f9e4b769932
69 sg:journal.1045337
70 schema:name Silver nanowires with optimized silica coating as versatile plasmonic resonators
71 schema:pagination 3859
72 schema:productId N78da2786a1cd409f8f14ae25398ade79
73 N8a1c14500cc4487ebf67cdc066fd2b32
74 N99b7c182ecb74906a485b627e52b4e53
75 Nd339484757fc4eeea4aed6b0d4dbff71
76 Nf34e6a41a927442ba20a205d123ff476
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112603421
78 https://doi.org/10.1038/s41598-019-40380-5
79 schema:sdDatePublished 2019-04-11T11:27
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N74606def81f24d3fba89f4dc2b832e10
82 schema:url https://www.nature.com/articles/s41598-019-40380-5
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0811805af2864480a0f4b98dedc9989b schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N113715b8d7884b5a8ef993c87bab022c schema:affiliation https://www.grid.ac/institutes/grid.424048.e
89 schema:familyName Zhao
90 schema:givenName Yuhang
91 rdf:type schema:Person
92 N17833331f6984ed9bc8614a13a2b1281 schema:affiliation https://www.grid.ac/institutes/grid.11348.3f
93 schema:familyName Lu
94 schema:givenName Yan
95 rdf:type schema:Person
96 N21cb0f48643241b4a10a88f300c116c3 rdf:first N17833331f6984ed9bc8614a13a2b1281
97 rdf:rest N3925cdd241a742e6bce30a7c9cccb2ba
98 N3925cdd241a742e6bce30a7c9cccb2ba rdf:first N847cf349f7f74eb8b448a575944068de
99 rdf:rest rdf:nil
100 N455731f95575406ca5f9be5e0614d6be schema:affiliation https://www.grid.ac/institutes/grid.419552.e
101 schema:familyName van Aken
102 schema:givenName Peter A.
103 rdf:type schema:Person
104 N494f89f484114b04a7997879421fc847 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
105 schema:familyName Rothe
106 schema:givenName Martin
107 rdf:type schema:Person
108 N5472fdcffc02433d9bed8bc5df23ea43 rdf:first Nfa75053715fc4a01b9cc660dac4acf89
109 rdf:rest Ne8ddadf600af4733bcebfc508d979308
110 N5cd55bb7c7a648c5b9540bee1ffadb8c schema:affiliation https://www.grid.ac/institutes/grid.419552.e
111 schema:familyName Sigle
112 schema:givenName Wilfried
113 rdf:type schema:Person
114 N74606def81f24d3fba89f4dc2b832e10 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N77ef86e0eb32405094a8af4af41b93e2 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
117 schema:familyName Kewes
118 schema:givenName Günter
119 rdf:type schema:Person
120 N78da2786a1cd409f8f14ae25398ade79 schema:name nlm_unique_id
121 schema:value 101563288
122 rdf:type schema:PropertyValue
123 N847cf349f7f74eb8b448a575944068de schema:affiliation https://www.grid.ac/institutes/grid.7468.d
124 schema:familyName Benson
125 schema:givenName Oliver
126 rdf:type schema:Person
127 N85500cbe37cc444aad77b3c330223228 rdf:first N455731f95575406ca5f9be5e0614d6be
128 rdf:rest N5472fdcffc02433d9bed8bc5df23ea43
129 N8a1c14500cc4487ebf67cdc066fd2b32 schema:name readcube_id
130 schema:value 4a6f4d371a5ff0e90be83fb74833271dab4034470af142966644aa6996b96707
131 rdf:type schema:PropertyValue
132 N8e286156476b405a83d19f9e4b769932 schema:volumeNumber 9
133 rdf:type schema:PublicationVolume
134 N99b7c182ecb74906a485b627e52b4e53 schema:name dimensions_id
135 schema:value pub.1112603421
136 rdf:type schema:PropertyValue
137 Na45cdd69caab43ff9539fd058db5ad25 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
138 schema:familyName Ballauff
139 schema:givenName Matthias
140 rdf:type schema:Person
141 Nb21536dfdf884ce3911903d95623075a rdf:first N113715b8d7884b5a8ef993c87bab022c
142 rdf:rest Nc27231ed86d84ce491c8150c89bd2dd2
143 Nb7083f62287545fd8c5fd54dc9519190 schema:affiliation https://www.grid.ac/institutes/grid.424048.e
144 schema:familyName Kochovski
145 schema:givenName Zdravko
146 rdf:type schema:Person
147 Nc27231ed86d84ce491c8150c89bd2dd2 rdf:first N77ef86e0eb32405094a8af4af41b93e2
148 rdf:rest Ncb56070601dc495cae82112a138d6367
149 Ncb56070601dc495cae82112a138d6367 rdf:first Nb7083f62287545fd8c5fd54dc9519190
150 rdf:rest Nd560da831a3e437aa92bd29451879e2f
151 Nd339484757fc4eeea4aed6b0d4dbff71 schema:name doi
152 schema:value 10.1038/s41598-019-40380-5
153 rdf:type schema:PropertyValue
154 Nd560da831a3e437aa92bd29451879e2f rdf:first N5cd55bb7c7a648c5b9540bee1ffadb8c
155 rdf:rest N85500cbe37cc444aad77b3c330223228
156 Ne4d66b2e903d445e8c51d140f230ec4d rdf:first N494f89f484114b04a7997879421fc847
157 rdf:rest Nb21536dfdf884ce3911903d95623075a
158 Ne8ddadf600af4733bcebfc508d979308 rdf:first Na45cdd69caab43ff9539fd058db5ad25
159 rdf:rest N21cb0f48643241b4a10a88f300c116c3
160 Nf34e6a41a927442ba20a205d123ff476 schema:name pubmed_id
161 schema:value 30846736
162 rdf:type schema:PropertyValue
163 Nfa75053715fc4a01b9cc660dac4acf89 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
164 schema:familyName Koch
165 schema:givenName Christoph
166 rdf:type schema:Person
167 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
168 schema:name Technology
169 rdf:type schema:DefinedTerm
170 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
171 schema:name Nanotechnology
172 rdf:type schema:DefinedTerm
173 sg:grant.4813146 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40380-5
174 rdf:type schema:MonetaryGrant
175 sg:journal.1045337 schema:issn 2045-2322
176 schema:name Scientific Reports
177 rdf:type schema:Periodical
178 sg:pub.10.1038/lsa.2015.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031562376
179 https://doi.org/10.1038/lsa.2015.67
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature01937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876312
182 https://doi.org/10.1038/nature01937
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature08364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002908419
185 https://doi.org/10.1038/nature08364
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature08907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013655144
188 https://doi.org/10.1038/nature08907
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nmat2630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045886981
191 https://doi.org/10.1038/nmat2630
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nnano.2014.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051042161
194 https://doi.org/10.1038/nnano.2014.135
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nnano.2014.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403690
197 https://doi.org/10.1038/nnano.2014.311
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nphoton.2008.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020420660
200 https://doi.org/10.1038/nphoton.2008.131
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nphoton.2009.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947781
203 https://doi.org/10.1038/nphoton.2009.282
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nphoton.2010.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026730155
206 https://doi.org/10.1038/nphoton.2010.237
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nphoton.2014.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672253
209 https://doi.org/10.1038/nphoton.2014.239
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nphys708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000412927
212 https://doi.org/10.1038/nphys708
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/srep28877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017539088
215 https://doi.org/10.1038/srep28877
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/0471213748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661498
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/anie.200802248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033005548
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/lpor.201200003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021308222
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1002/lpor.201300028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050525253
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/pssb.201046197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048074185
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/0021-9797(68)90272-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024238085
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/0021-9797(85)90304-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046704357
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.compscitech.2014.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013473413
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.optcom.2010.01.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010077843
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.solmat.2014.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047841460
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.talanta.2005.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010369021
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1021/acs.jpcc.6b12748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083549998
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1021/acs.nanolett.6b04659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055122029
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1021/acsphotonics.7b00292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086000486
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/acsphotonics.7b00526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091963069
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/acsphotonics.8b00766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106987004
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/cm020587b schema:sameAs https://app.dimensions.ai/details/publication/pub.1048953803
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/ja074705d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055845632
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/jp026731y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039003927
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1021/jp073853n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056072673
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1021/jp990992z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033801924
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1021/jz900366c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056136144
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1021/la010736p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056142747
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1021/nl010093y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042032170
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1021/nl025508+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215258
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1021/nl034312m schema:sameAs https://app.dimensions.ai/details/publication/pub.1003215060
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1021/nl071763o schema:sameAs https://app.dimensions.ai/details/publication/pub.1043753860
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1021/nl103834y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218333
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1039/c2ra01162j schema:sameAs https://app.dimensions.ai/details/publication/pub.1028994184
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1039/c3ta10495h schema:sameAs https://app.dimensions.ai/details/publication/pub.1013944107
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1063/1.443196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058021221
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1063/1.4790824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058069215
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1088/0034-4885/78/1/013901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003500368
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1088/1367-2630/11/1/015002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059134464
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1103/physrevlett.110.066801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761154
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1103/physrevlett.118.237402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085973485
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1103/physrevlett.95.257403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037030744
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1103/physrevlett.99.136802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834646
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1109/3.720227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061149427
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1146/annurev-physchem-052516-050730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083398570
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1364/oe.23.015152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019109845
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1364/ol.22.001831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217709
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1364/ome.7.002586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090246477
304 rdf:type schema:CreativeWork
305 https://www.grid.ac/institutes/grid.11348.3f schema:alternateName University of Potsdam
306 schema:name Helmholtz Zentrum Berlin für Materialien und Energie, Institute of Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
307 Institute of Chemistry, University of Potsdam, 14467, Potsdam, Germany
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.419552.e schema:alternateName Max Planck Institute for Solid State Research
310 schema:name Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
311 rdf:type schema:Organization
312 https://www.grid.ac/institutes/grid.424048.e schema:alternateName Helmholtz-Zentrum Berlin
313 schema:name Helmholtz Zentrum Berlin für Materialien und Energie, Institute of Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
314 rdf:type schema:Organization
315 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
316 schema:name Helmholtz Zentrum Berlin für Materialien und Energie, Institute of Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
317 Humboldt Universität zu Berlin & IRIS Adlershof, Nanooptics, Newtonstraße 15, 12489, Berlin, Germany
318 Humboldt Universität zu Berlin & IRIS Adlershof, Structure Research and Electron Microscopy, Newtonstraße 15, 12489, Berlin, Germany
319 Humboldt Universität zu Berlin, Department of Physics, 12489, Berlin, Germany
320 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...