Spatial variation of yield response and fertilizer requirements on regional scale for irrigated rice in China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xinpeng Xu, Ping He, Mirasol F. Pampolino, Shaojun Qiu, Shicheng Zhao, Wei Zhou

ABSTRACT

A large number of on-farm experiments (n = 5556) were collected for the period 2000-2015 from the major rice (Oryza sativa L.) producing regions in China, to study the spatial variability of attainable yield, yield response, relative yield and fertilizer requirements at regional scale, by coupling geographical information system with the Nutrient Expert for Rice decision support system. Results indicated that average attainable yield was 8.8 t ha-1 across all sites, with 18.3% variation. There were large variations in yield response to nitrogen (N), phosphorus (P), and potassium (K) fertilizer application with coefficients of variation of 39.2%, 57.0%, and 53.4%, and the sites of 73.4%, 85.8%, and 87.6% in the study area ranged from 2.0 to 3.0, from 0.7 to 1.3, and from 0.7 to 1.3 t ha-1, respectively. Mapping the spatial variability of relative yield to N, P, and K indicated that the sites of 78.6%, 92.4%, and 88.7% in the study area ranged from 0.65 to 0.75, from 0.80 to 0.92, and from 0.84 to 0.92, respectively. The high yield response and low relative yield to N and P were mainly located in the Northeast (NE), Northwest (NW), and north of the Middle and Lower Reaches of Yangtze River (MLYR) regions. The spatial distribution of N, P, and K fertilizer requirements ranged 140-160 kg N ha-1, 50-70 kg P2O5 ha-1 and 35-65 kg K2O ha-1 which accounted for 66.4%, 85.5% and 73.0% of sites in the study area, respectively. This study analyzed the spatial heterogeneity of attainable yield, soil nutrient supply capacity and nutrient requirements based on a large database at regional or national scale by means of geographical information systems and fertilizer recommendation systems, which provided a useful tool to manage natural resources, increase efficiency and productivity, and minimize environmental risk. More... »

PAGES

3589

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40367-2

DOI

http://dx.doi.org/10.1038/s41598-019-40367-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30837657


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 100081, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Xinpeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 100081, Beijing, P.R. China", 
            "International Plant Nutrition Institute (IPNI) China Program, CAAS-IPNI Joint Lab for Plant Nutrition Innovation Research, 100081, Beijing, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Ping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "International Plant Nutrition Institute (IPNI), Southeast Asia Program, c/o IRRI, Los Ba\u00f1os, Laguna, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pampolino", 
        "givenName": "Mirasol F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 100081, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Shaojun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 100081, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shicheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Agricultural Resources and Regional Planning", 
          "id": "https://www.grid.ac/institutes/grid.464330.6", 
          "name": [
            "Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 100081, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Wei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature13609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001487664", 
          "https://doi.org/10.1038/nature13609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agsy.2010.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005286779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2013.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006042988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2014.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011289364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014138923", 
          "https://doi.org/10.1038/nature11420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015374977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0708013104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016960845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2015.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022191455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2015.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025170517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2012.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026358204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027513907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2016.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027803154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(90)90021-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031090872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(90)90021-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031090872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2015.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agsy.2015.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032370588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cosust.2010.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034163408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2012.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037050729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agsy.2014.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037917580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2013.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038591001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2013.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040327933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2015.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042588976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1699(02)00099-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043215866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1699(02)00099-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043215866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2014.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043455879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044034624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2015.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044099321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-011-0909-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045109154", 
          "https://doi.org/10.1007/s11104-011-0909-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2013.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046618627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/497033a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051518569", 
          "https://doi.org/10.1038/497033a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0813417106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052023921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2017.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084074316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2017.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092086622"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "A large number of on-farm experiments (n\u2009=\u20095556) were collected for the period 2000-2015 from the major rice (Oryza sativa L.) producing regions in China, to study the spatial variability of attainable yield, yield response, relative yield and fertilizer requirements at regional scale, by coupling geographical information system with the Nutrient Expert for Rice decision support system. Results indicated that average attainable yield was 8.8 t ha-1 across all sites, with 18.3% variation. There were large variations in yield response to nitrogen (N), phosphorus (P), and potassium (K) fertilizer application with coefficients of variation of 39.2%, 57.0%, and 53.4%, and the sites of 73.4%, 85.8%, and 87.6% in the study area ranged from 2.0 to 3.0, from 0.7 to 1.3, and from 0.7 to 1.3 t ha-1, respectively. Mapping the spatial variability of relative yield to N, P, and K indicated that the sites of 78.6%, 92.4%, and 88.7% in the study area ranged from 0.65 to 0.75, from 0.80 to 0.92, and from 0.84 to 0.92, respectively. The high yield response and low relative yield to N and P were mainly located in the Northeast (NE), Northwest (NW), and north of the Middle and Lower Reaches of Yangtze River (MLYR) regions. The spatial distribution of N, P, and K fertilizer requirements ranged 140-160\u2009kg\u2009N ha-1, 50-70\u2009kg P2O5 ha-1 and 35-65\u2009kg K2O ha-1 which accounted for 66.4%, 85.5% and 73.0% of sites in the study area, respectively. This study analyzed the spatial heterogeneity of attainable yield, soil nutrient supply capacity and nutrient requirements based on a large database at regional or national scale by means of geographical information systems and fertilizer recommendation systems, which provided a useful tool to manage natural resources, increase efficiency and productivity, and minimize environmental risk.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40367-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Spatial variation of yield response and fertilizer requirements on regional scale for irrigated rice in China", 
    "pagination": "3589", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e688bdd5c5208d6961f72df6bba6816c2f7e52bd3317f5eb20bab99b4c79801"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30837657"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40367-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544115"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40367-2", 
      "https://app.dimensions.ai/details/publication/pub.1112544115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11719_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40367-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40367-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40367-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40367-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40367-2'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40367-2 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N954909238112444f8af4e88d152ccf73
4 schema:citation sg:pub.10.1007/s11104-011-0909-5
5 sg:pub.10.1038/497033a
6 sg:pub.10.1038/nature11420
7 sg:pub.10.1038/nature13609
8 https://doi.org/10.1016/0016-7061(90)90021-z
9 https://doi.org/10.1016/j.agee.2014.04.027
10 https://doi.org/10.1016/j.agee.2014.06.014
11 https://doi.org/10.1016/j.agee.2015.01.001
12 https://doi.org/10.1016/j.agsy.2010.02.004
13 https://doi.org/10.1016/j.agsy.2014.08.003
14 https://doi.org/10.1016/j.agsy.2015.01.004
15 https://doi.org/10.1016/j.agwat.2015.10.015
16 https://doi.org/10.1016/j.compag.2012.07.007
17 https://doi.org/10.1016/j.cosust.2010.12.010
18 https://doi.org/10.1016/j.fcr.2012.09.009
19 https://doi.org/10.1016/j.fcr.2012.12.003
20 https://doi.org/10.1016/j.fcr.2013.01.010
21 https://doi.org/10.1016/j.fcr.2013.04.004
22 https://doi.org/10.1016/j.fcr.2013.06.012
23 https://doi.org/10.1016/j.fcr.2013.07.019
24 https://doi.org/10.1016/j.fcr.2014.05.007
25 https://doi.org/10.1016/j.fcr.2015.05.008
26 https://doi.org/10.1016/j.fcr.2015.09.003
27 https://doi.org/10.1016/j.fcr.2015.09.006
28 https://doi.org/10.1016/j.fcr.2015.11.011
29 https://doi.org/10.1016/j.fcr.2016.11.013
30 https://doi.org/10.1016/j.fcr.2017.02.011
31 https://doi.org/10.1016/j.fcr.2017.09.034
32 https://doi.org/10.1016/s0168-1699(02)00099-6
33 https://doi.org/10.1073/pnas.0708013104
34 https://doi.org/10.1073/pnas.0813417106
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description A large number of on-farm experiments (n = 5556) were collected for the period 2000-2015 from the major rice (Oryza sativa L.) producing regions in China, to study the spatial variability of attainable yield, yield response, relative yield and fertilizer requirements at regional scale, by coupling geographical information system with the Nutrient Expert for Rice decision support system. Results indicated that average attainable yield was 8.8 t ha<sup>-1</sup> across all sites, with 18.3% variation. There were large variations in yield response to nitrogen (N), phosphorus (P), and potassium (K) fertilizer application with coefficients of variation of 39.2%, 57.0%, and 53.4%, and the sites of 73.4%, 85.8%, and 87.6% in the study area ranged from 2.0 to 3.0, from 0.7 to 1.3, and from 0.7 to 1.3 t ha<sup>-1</sup>, respectively. Mapping the spatial variability of relative yield to N, P, and K indicated that the sites of 78.6%, 92.4%, and 88.7% in the study area ranged from 0.65 to 0.75, from 0.80 to 0.92, and from 0.84 to 0.92, respectively. The high yield response and low relative yield to N and P were mainly located in the Northeast (NE), Northwest (NW), and north of the Middle and Lower Reaches of Yangtze River (MLYR) regions. The spatial distribution of N, P, and K fertilizer requirements ranged 140-160 kg N ha<sup>-1</sup>, 50-70 kg P<sub>2</sub>O<sub>5</sub> ha<sup>-1</sup> and 35-65 kg K<sub>2</sub>O ha<sup>-1</sup> which accounted for 66.4%, 85.5% and 73.0% of sites in the study area, respectively. This study analyzed the spatial heterogeneity of attainable yield, soil nutrient supply capacity and nutrient requirements based on a large database at regional or national scale by means of geographical information systems and fertilizer recommendation systems, which provided a useful tool to manage natural resources, increase efficiency and productivity, and minimize environmental risk.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N20f60302ea5048608cb86c01faf1a3b8
42 N7fcc2245c3b849bbb76c82e72d4dddb4
43 sg:journal.1045337
44 schema:name Spatial variation of yield response and fertilizer requirements on regional scale for irrigated rice in China
45 schema:pagination 3589
46 schema:productId N4faac934347a4206b307fc9468322304
47 N570e4494ad074ba2b3bbdc24b0f94af9
48 N7cf92f20cfc04aa292f78bb0d96aa094
49 N922b0ce0141241579525cc46a038af59
50 Nae05a5ba00154f8aa225b8342ad8442d
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544115
52 https://doi.org/10.1038/s41598-019-40367-2
53 schema:sdDatePublished 2019-04-11T11:20
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N62e3a5c15c4c482b876ad6bf6baf78d4
56 schema:url https://www.nature.com/articles/s41598-019-40367-2
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N092ead27131f4bd9891eb607b8a01bf4 schema:affiliation Nf0374f96010a4d70a1d9a01ec1fa672e
61 schema:familyName Pampolino
62 schema:givenName Mirasol F.
63 rdf:type schema:Person
64 N117f41c4cfb645f58b8820ee1559c670 rdf:first Neab08563352a4c188a1e3c66c29cbe1e
65 rdf:rest N7163071023b6470ba7e6424023a48b32
66 N15a382c934714e5ca2931ee3f783a5ec schema:affiliation https://www.grid.ac/institutes/grid.464330.6
67 schema:familyName Qiu
68 schema:givenName Shaojun
69 rdf:type schema:Person
70 N209726304aac4c63b2610857a2572605 rdf:first N15a382c934714e5ca2931ee3f783a5ec
71 rdf:rest N117f41c4cfb645f58b8820ee1559c670
72 N20f60302ea5048608cb86c01faf1a3b8 schema:volumeNumber 9
73 rdf:type schema:PublicationVolume
74 N4faac934347a4206b307fc9468322304 schema:name readcube_id
75 schema:value 9e688bdd5c5208d6961f72df6bba6816c2f7e52bd3317f5eb20bab99b4c79801
76 rdf:type schema:PropertyValue
77 N570e4494ad074ba2b3bbdc24b0f94af9 schema:name dimensions_id
78 schema:value pub.1112544115
79 rdf:type schema:PropertyValue
80 N5c42ff7515f34f4f8e10f83470a69221 schema:affiliation https://www.grid.ac/institutes/grid.464330.6
81 schema:familyName Zhou
82 schema:givenName Wei
83 rdf:type schema:Person
84 N5d7b55f6170f49359d30fc1e3e897431 schema:affiliation https://www.grid.ac/institutes/grid.464330.6
85 schema:familyName He
86 schema:givenName Ping
87 rdf:type schema:Person
88 N62e3a5c15c4c482b876ad6bf6baf78d4 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N6854a4e0ea6041e1aa7f1714d4de69d3 schema:affiliation https://www.grid.ac/institutes/grid.464330.6
91 schema:familyName Xu
92 schema:givenName Xinpeng
93 rdf:type schema:Person
94 N7163071023b6470ba7e6424023a48b32 rdf:first N5c42ff7515f34f4f8e10f83470a69221
95 rdf:rest rdf:nil
96 N7cf92f20cfc04aa292f78bb0d96aa094 schema:name nlm_unique_id
97 schema:value 101563288
98 rdf:type schema:PropertyValue
99 N7fcc2245c3b849bbb76c82e72d4dddb4 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N922b0ce0141241579525cc46a038af59 schema:name doi
102 schema:value 10.1038/s41598-019-40367-2
103 rdf:type schema:PropertyValue
104 N954909238112444f8af4e88d152ccf73 rdf:first N6854a4e0ea6041e1aa7f1714d4de69d3
105 rdf:rest Ne0e3f4537927494a87bcde1f4340df9a
106 Nae05a5ba00154f8aa225b8342ad8442d schema:name pubmed_id
107 schema:value 30837657
108 rdf:type schema:PropertyValue
109 Ne0e3f4537927494a87bcde1f4340df9a rdf:first N5d7b55f6170f49359d30fc1e3e897431
110 rdf:rest Nfef621736b00448f93c35498f9c02893
111 Neab08563352a4c188a1e3c66c29cbe1e schema:affiliation https://www.grid.ac/institutes/grid.464330.6
112 schema:familyName Zhao
113 schema:givenName Shicheng
114 rdf:type schema:Person
115 Nf0374f96010a4d70a1d9a01ec1fa672e schema:name International Plant Nutrition Institute (IPNI), Southeast Asia Program, c/o IRRI, Los Baños, Laguna, Philippines
116 rdf:type schema:Organization
117 Nfef621736b00448f93c35498f9c02893 rdf:first N092ead27131f4bd9891eb607b8a01bf4
118 rdf:rest N209726304aac4c63b2610857a2572605
119 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
120 schema:name Environmental Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
123 schema:name Environmental Science and Management
124 rdf:type schema:DefinedTerm
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 rdf:type schema:Periodical
128 sg:pub.10.1007/s11104-011-0909-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045109154
129 https://doi.org/10.1007/s11104-011-0909-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/497033a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051518569
132 https://doi.org/10.1038/497033a
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature11420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014138923
135 https://doi.org/10.1038/nature11420
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature13609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001487664
138 https://doi.org/10.1038/nature13609
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0016-7061(90)90021-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031090872
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.agee.2014.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043455879
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.agee.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044034624
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.agee.2015.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956433
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.agsy.2010.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005286779
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.agsy.2014.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037917580
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.agsy.2015.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032370588
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.agwat.2015.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099321
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.compag.2012.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037050729
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cosust.2010.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034163408
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.fcr.2012.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026358204
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.fcr.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015374977
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.fcr.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046618627
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.fcr.2013.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040327933
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.fcr.2013.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038591001
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.fcr.2013.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006042988
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.fcr.2014.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011289364
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.fcr.2015.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042588976
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.fcr.2015.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025170517
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.fcr.2015.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022191455
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.fcr.2015.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027513907
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.fcr.2016.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027803154
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.fcr.2017.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084074316
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.fcr.2017.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092086622
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0168-1699(02)00099-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043215866
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.0708013104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016960845
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.0813417106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052023921
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.464330.6 schema:alternateName Institute of Agricultural Resources and Regional Planning
195 schema:name Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 100081, Beijing, P.R. China
196 International Plant Nutrition Institute (IPNI) China Program, CAAS-IPNI Joint Lab for Plant Nutrition Innovation Research, 100081, Beijing, PR China
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...