Engraftment and proliferation potential of embryonic lung tissue cells in irradiated mice with emphysema View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kazushige Shiraishi, Shigeyuki Shichino, Tatsuya Tsukui, Shinichi Hashimoto, Satoshi Ueha, Kouji Matsushima

ABSTRACT

Recently, there has been increasing interest in stem cell transplantation therapy, to treat chronic respiratory diseases, using lung epithelial cells or alveolospheres derived from endogenous lung progenitor cells. However, optimal transplantation strategy of these cells has not been addressed. To gain insight into the optimization of stem cell transplantation therapy, we investigated whether lung cell engraftment potential differ among different developmental stages. After preconditioning with irradiation and elastase to induce lung damage, we infused embryonic day 15.5 (E15.5) CAG-EGFP whole lung cells, and confirmed the engraftment of epithelial cells, endothelial cells, and mesenchymal cells. The number of EGFP-positive epithelial cells increased from day 7 to 28 after infusion. Among epithelial cells derived from E13.5, E15.5, E18.5, P7, P14, and P56 mice, E15.5 cells demonstrated the most efficient engraftment. In vitro, E15.5 epithelial cells showed high proliferation potential. Transcriptome analyses of sorted epithelial cells from E13.5, E15.5, E18.5, P14, and P56 mice revealed that cell cycle and cell-cell adhesion genes were highly enriched in E15.5 epithelial cells. Our findings suggest that cell therapy for lung diseases might be most effective when epithelial cells with transcriptional traits similar to those of E15.5 epithelial cells are used. More... »

PAGES

3657

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40237-x

DOI

http://dx.doi.org/10.1038/s41598-019-40237-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112571117

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30842492


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan", 
            "Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, 278-0022, Noda, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiraishi", 
        "givenName": "Kazushige", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan", 
            "Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, 278-0022, Noda, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shichino", 
        "givenName": "Shigeyuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukui", 
        "givenName": "Tatsuya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa University", 
          "id": "https://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan", 
            "Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, 278-0022, Noda, Japan", 
            "Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, 920-8641, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Shinichi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan", 
            "Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, 278-0022, Noda, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueha", 
        "givenName": "Satoshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan", 
            "Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, 278-0022, Noda, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsushima", 
        "givenName": "Kouji", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0906850106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005813863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.098186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005918577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008501450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010372865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-839-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011983410", 
          "https://doi.org/10.1007/978-1-61779-839-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2009.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016761316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016874405", 
          "https://doi.org/10.1038/nm.3923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2013.12.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017225779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018218052", 
          "https://doi.org/10.1038/nature07005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018328066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1311760110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020140001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0962-8924(03)00105-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026435549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0962-8924(03)00105-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026435549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci11791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027300418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.19.5.443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.19.5.443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028849186", 
          "https://doi.org/10.1038/nm.2695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029007821", 
          "https://doi.org/10.1186/1471-2105-14-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033423157", 
          "https://doi.org/10.1038/nm.3642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ydbio.2007.04.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033615133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajpath.2013.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039002668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci68782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040259078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dmm.006031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040908804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.0803154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041115841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638061", 
          "https://doi.org/10.1038/nature13173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043411038", 
          "https://doi.org/10.1038/nrm3629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/20.9.2273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046043194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1513/pats.200601-008aw", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047460999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1094-5539(02)00099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048754373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1094-5539(02)00099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048754373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81270-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049013118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bjh.13335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049175088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stem.2014.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049642484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050090022", 
          "https://doi.org/10.1038/nm.3889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050509557", 
          "https://doi.org/10.1186/gb-2010-11-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stem.2013.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050674447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-1878(200101)23:1<77::aid-bies1010>3.0.co;2-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050785755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1947601913478972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064081166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-155-3-201108020-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073712361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.1995.269.6.l791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082864420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.140103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084256448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb3510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085071016", 
          "https://doi.org/10.1038/ncb3510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb3510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085071016", 
          "https://doi.org/10.1038/ncb3510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci89950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085117748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stem.2017.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091979092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092055700", 
          "https://doi.org/10.1038/nmeth.4448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092055700", 
          "https://doi.org/10.1038/nmeth.4448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092546044", 
          "https://doi.org/10.1038/nmeth.4498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092546044", 
          "https://doi.org/10.1038/nmeth.4498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.152587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092685057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isci.2018.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110903369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isci.2018.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110903369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isci.2018.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110903369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isci.2018.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110903369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci.insight.122163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111318029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Recently, there has been increasing interest in stem cell transplantation therapy, to treat chronic respiratory diseases, using lung epithelial cells or alveolospheres derived from endogenous lung progenitor cells. However, optimal transplantation strategy of these cells has not been addressed. To gain insight into the optimization of stem cell transplantation therapy, we investigated whether lung cell engraftment potential differ among different developmental stages. After preconditioning with irradiation and elastase to induce lung damage, we infused embryonic day 15.5 (E15.5) CAG-EGFP whole lung cells, and confirmed the engraftment of epithelial cells, endothelial cells, and mesenchymal cells. The number of EGFP-positive epithelial cells increased from day 7 to 28 after infusion. Among epithelial cells derived from E13.5, E15.5, E18.5, P7, P14, and P56 mice, E15.5 cells demonstrated the most efficient engraftment. In vitro, E15.5 epithelial cells showed high proliferation potential. Transcriptome analyses of sorted epithelial cells from E13.5, E15.5, E18.5, P14, and P56 mice revealed that cell cycle and cell-cell adhesion genes were highly enriched in E15.5 epithelial cells. Our findings suggest that cell therapy for lung diseases might be most effective when epithelial cells with transcriptional traits similar to those of E15.5 epithelial cells are used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40237-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6956903", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5911517", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6958320", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5897627", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Engraftment and proliferation potential of embryonic lung tissue cells in irradiated mice with emphysema", 
    "pagination": "3657", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c418569f8a2b8e1d077a1f67b5761d9d280d629b8f776969cc95f7848482f70"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30842492"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40237-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112571117"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40237-x", 
      "https://app.dimensions.ai/details/publication/pub.1112571117"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57898_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40237-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40237-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40237-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40237-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40237-x'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40237-x schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N7fa57ec68072461a9c68d562e8c3f421
4 schema:citation sg:pub.10.1007/978-1-61779-839-9_1
5 sg:pub.10.1038/nature07005
6 sg:pub.10.1038/nature13173
7 sg:pub.10.1038/ncb3510
8 sg:pub.10.1038/nm.2695
9 sg:pub.10.1038/nm.3642
10 sg:pub.10.1038/nm.3889
11 sg:pub.10.1038/nm.3923
12 sg:pub.10.1038/nmeth.1923
13 sg:pub.10.1038/nmeth.4448
14 sg:pub.10.1038/nmeth.4498
15 sg:pub.10.1038/nprot.2008.211
16 sg:pub.10.1038/nrm3629
17 sg:pub.10.1186/1471-2105-14-219
18 sg:pub.10.1186/gb-2010-11-3-r25
19 https://doi.org/10.1002/1521-1878(200101)23:1<77::aid-bies1010>3.0.co;2-e
20 https://doi.org/10.1016/j.ajpath.2013.06.005
21 https://doi.org/10.1016/j.devcel.2009.12.010
22 https://doi.org/10.1016/j.ijcard.2013.12.115
23 https://doi.org/10.1016/j.isci.2018.12.022
24 https://doi.org/10.1016/j.stem.2013.09.015
25 https://doi.org/10.1016/j.stem.2014.07.012
26 https://doi.org/10.1016/j.stem.2017.08.014
27 https://doi.org/10.1016/j.ydbio.2007.04.042
28 https://doi.org/10.1016/s0092-8674(00)81270-2
29 https://doi.org/10.1016/s0962-8924(03)00105-3
30 https://doi.org/10.1016/s1094-5539(02)00099-8
31 https://doi.org/10.1073/pnas.0906850106
32 https://doi.org/10.1073/pnas.1311760110
33 https://doi.org/10.1093/bioinformatics/btg232
34 https://doi.org/10.1093/bioinformatics/btr026
35 https://doi.org/10.1093/bioinformatics/btu170
36 https://doi.org/10.1093/emboj/20.9.2273
37 https://doi.org/10.1093/nar/gkt965
38 https://doi.org/10.1111/bjh.13335
39 https://doi.org/10.1136/thx.19.5.443
40 https://doi.org/10.1152/ajplung.1995.269.6.l791
41 https://doi.org/10.1172/jci.insight.122163
42 https://doi.org/10.1172/jci11791
43 https://doi.org/10.1172/jci68782
44 https://doi.org/10.1172/jci89950
45 https://doi.org/10.1177/1947601913478972
46 https://doi.org/10.1242/dev.098186
47 https://doi.org/10.1242/dev.140103
48 https://doi.org/10.1242/dev.152587
49 https://doi.org/10.1242/dmm.006031
50 https://doi.org/10.1513/pats.200601-008aw
51 https://doi.org/10.4049/jimmunol.0803154
52 https://doi.org/10.7326/0003-4819-155-3-201108020-00008
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description Recently, there has been increasing interest in stem cell transplantation therapy, to treat chronic respiratory diseases, using lung epithelial cells or alveolospheres derived from endogenous lung progenitor cells. However, optimal transplantation strategy of these cells has not been addressed. To gain insight into the optimization of stem cell transplantation therapy, we investigated whether lung cell engraftment potential differ among different developmental stages. After preconditioning with irradiation and elastase to induce lung damage, we infused embryonic day 15.5 (E15.5) CAG-EGFP whole lung cells, and confirmed the engraftment of epithelial cells, endothelial cells, and mesenchymal cells. The number of EGFP-positive epithelial cells increased from day 7 to 28 after infusion. Among epithelial cells derived from E13.5, E15.5, E18.5, P7, P14, and P56 mice, E15.5 cells demonstrated the most efficient engraftment. In vitro, E15.5 epithelial cells showed high proliferation potential. Transcriptome analyses of sorted epithelial cells from E13.5, E15.5, E18.5, P14, and P56 mice revealed that cell cycle and cell-cell adhesion genes were highly enriched in E15.5 epithelial cells. Our findings suggest that cell therapy for lung diseases might be most effective when epithelial cells with transcriptional traits similar to those of E15.5 epithelial cells are used.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N51a0e2a651a94feabbe9271bef5a7812
60 N5c6dc4722bfd41b291b739ed5875bed8
61 sg:journal.1045337
62 schema:name Engraftment and proliferation potential of embryonic lung tissue cells in irradiated mice with emphysema
63 schema:pagination 3657
64 schema:productId N0a43fa7037b049d69fecdedafa406880
65 N3544179325ec47d89fd236ffce3cd730
66 N808637ff6c6341b8be5fb8c6690bffa2
67 Ndcb7930cd2ca4faa8b9f71cec8f96c0c
68 Nf0558ff6ade0419fbd2db7134cb8c17d
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112571117
70 https://doi.org/10.1038/s41598-019-40237-x
71 schema:sdDatePublished 2019-04-11T11:27
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nb3651c8a24d649939c84b2a70c0952c9
74 schema:url https://www.nature.com/articles/s41598-019-40237-x
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0a43fa7037b049d69fecdedafa406880 schema:name nlm_unique_id
79 schema:value 101563288
80 rdf:type schema:PropertyValue
81 N2ae67aff5e544538a525a25880e35a84 rdf:first N442c963edf4b4d889cfbd22f8e68506c
82 rdf:rest Nb501ce0d20784b03b93f13167919303a
83 N3544179325ec47d89fd236ffce3cd730 schema:name doi
84 schema:value 10.1038/s41598-019-40237-x
85 rdf:type schema:PropertyValue
86 N442c963edf4b4d889cfbd22f8e68506c schema:affiliation https://www.grid.ac/institutes/grid.9707.9
87 schema:familyName Hashimoto
88 schema:givenName Shinichi
89 rdf:type schema:Person
90 N51a0e2a651a94feabbe9271bef5a7812 schema:volumeNumber 9
91 rdf:type schema:PublicationVolume
92 N5c6dc4722bfd41b291b739ed5875bed8 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N7e59efee4bb84c45b628f1ec960576ea schema:affiliation https://www.grid.ac/institutes/grid.143643.7
95 schema:familyName Ueha
96 schema:givenName Satoshi
97 rdf:type schema:Person
98 N7fa57ec68072461a9c68d562e8c3f421 rdf:first Nb324bc8abebf4ed09a626660ef5c2fb8
99 rdf:rest Nbe339a40ad754dc1a1cd6aeb4fc82b56
100 N808637ff6c6341b8be5fb8c6690bffa2 schema:name readcube_id
101 schema:value 3c418569f8a2b8e1d077a1f67b5761d9d280d629b8f776969cc95f7848482f70
102 rdf:type schema:PropertyValue
103 N93516a193d3e4068b8a3de663f545b5d schema:affiliation https://www.grid.ac/institutes/grid.143643.7
104 schema:familyName Matsushima
105 schema:givenName Kouji
106 rdf:type schema:Person
107 N9b91b7a7ddfa47dab192aba8d38ef851 rdf:first N93516a193d3e4068b8a3de663f545b5d
108 rdf:rest rdf:nil
109 Nad519d84979a4a9d84d36aa0b940b721 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
110 schema:familyName Shichino
111 schema:givenName Shigeyuki
112 rdf:type schema:Person
113 Nb324bc8abebf4ed09a626660ef5c2fb8 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
114 schema:familyName Shiraishi
115 schema:givenName Kazushige
116 rdf:type schema:Person
117 Nb3651c8a24d649939c84b2a70c0952c9 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Nb501ce0d20784b03b93f13167919303a rdf:first N7e59efee4bb84c45b628f1ec960576ea
120 rdf:rest N9b91b7a7ddfa47dab192aba8d38ef851
121 Nbe339a40ad754dc1a1cd6aeb4fc82b56 rdf:first Nad519d84979a4a9d84d36aa0b940b721
122 rdf:rest Nf2fe116ddad54af5867d5be5df7f3566
123 Ndcb7930cd2ca4faa8b9f71cec8f96c0c schema:name dimensions_id
124 schema:value pub.1112571117
125 rdf:type schema:PropertyValue
126 Ne6a1f5b863b74f0396009f3a27858978 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
127 schema:familyName Tsukui
128 schema:givenName Tatsuya
129 rdf:type schema:Person
130 Nf0558ff6ade0419fbd2db7134cb8c17d schema:name pubmed_id
131 schema:value 30842492
132 rdf:type schema:PropertyValue
133 Nf2fe116ddad54af5867d5be5df7f3566 rdf:first Ne6a1f5b863b74f0396009f3a27858978
134 rdf:rest N2ae67aff5e544538a525a25880e35a84
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
139 schema:name Biochemistry and Cell Biology
140 rdf:type schema:DefinedTerm
141 sg:grant.5897627 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40237-x
142 rdf:type schema:MonetaryGrant
143 sg:grant.5911517 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40237-x
144 rdf:type schema:MonetaryGrant
145 sg:grant.6956903 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40237-x
146 rdf:type schema:MonetaryGrant
147 sg:grant.6958320 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40237-x
148 rdf:type schema:MonetaryGrant
149 sg:journal.1045337 schema:issn 2045-2322
150 schema:name Scientific Reports
151 rdf:type schema:Periodical
152 sg:pub.10.1007/978-1-61779-839-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011983410
153 https://doi.org/10.1007/978-1-61779-839-9_1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature07005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018218052
156 https://doi.org/10.1038/nature07005
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature13173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638061
159 https://doi.org/10.1038/nature13173
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncb3510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085071016
162 https://doi.org/10.1038/ncb3510
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nm.2695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028849186
165 https://doi.org/10.1038/nm.2695
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nm.3642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033423157
168 https://doi.org/10.1038/nm.3642
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nm.3889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050090022
171 https://doi.org/10.1038/nm.3889
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nm.3923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016874405
174 https://doi.org/10.1038/nm.3923
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
177 https://doi.org/10.1038/nmeth.1923
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nmeth.4448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092055700
180 https://doi.org/10.1038/nmeth.4448
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nmeth.4498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092546044
183 https://doi.org/10.1038/nmeth.4498
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
186 https://doi.org/10.1038/nprot.2008.211
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrm3629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043411038
189 https://doi.org/10.1038/nrm3629
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2105-14-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029007821
192 https://doi.org/10.1186/1471-2105-14-219
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
195 https://doi.org/10.1186/gb-2010-11-3-r25
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/1521-1878(200101)23:1<77::aid-bies1010>3.0.co;2-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1050785755
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ajpath.2013.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039002668
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.devcel.2009.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016761316
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ijcard.2013.12.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017225779
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.isci.2018.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110903369
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.stem.2013.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050674447
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.stem.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049642484
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.stem.2017.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091979092
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ydbio.2007.04.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033615133
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0092-8674(00)81270-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049013118
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0962-8924(03)00105-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026435549
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s1094-5539(02)00099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048754373
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0906850106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005813863
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.1311760110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020140001
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/bioinformatics/btg232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008501450
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/bioinformatics/btr026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018328066
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/emboj/20.9.2273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046043194
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/nar/gkt965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010372865
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/bjh.13335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049175088
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1136/thx.19.5.443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028082370
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1152/ajplung.1995.269.6.l791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082864420
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1172/jci.insight.122163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111318029
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1172/jci11791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027300418
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1172/jci68782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040259078
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1172/jci89950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085117748
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1177/1947601913478972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064081166
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1242/dev.098186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005918577
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1242/dev.140103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084256448
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1242/dev.152587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092685057
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1242/dmm.006031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040908804
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1513/pats.200601-008aw schema:sameAs https://app.dimensions.ai/details/publication/pub.1047460999
260 rdf:type schema:CreativeWork
261 https://doi.org/10.4049/jimmunol.0803154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041115841
262 rdf:type schema:CreativeWork
263 https://doi.org/10.7326/0003-4819-155-3-201108020-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073712361
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
266 schema:name Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan
267 Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, 278-0022, Noda, Japan
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
270 schema:name Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan
271 rdf:type schema:Organization
272 https://www.grid.ac/institutes/grid.9707.9 schema:alternateName Kanazawa University
273 schema:name Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, 920-8641, Kanazawa, Japan
274 Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan
275 Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, 278-0022, Noda, Japan
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...