New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-05

AUTHORS

Danyang Yu, Zeyu Zhang, Kimberly Glass, Jessica Su, Dawn L. DeMeo, Kelan Tantisira, Scott T. Weiss, Weiliang Qiu

ABSTRACT

The interplay among microRNAs (miRNAs) plays an important role in the developments of complex human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential correlation network is a powerful tool to investigate the differences of co-expression networks between cases and controls. To construct a differential correlation network, the Fisher's Z-transformation test is usually used. However, the Fisher's Z-transformation test requires the normality assumption, the violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements for Fisher's Z test have been proposed. However, these methods are too computationally intensive to be used to construct differential correlation networks for high-throughput genomic data. In this article, we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) overall performed better than other methods. More... »

PAGES

3499

References to SciGraph publications

  • 2004-09-15. The functions of animal microRNAs in NATURE
  • 2017-01-19. Differential correlation for sequencing data in BMC RESEARCH NOTES
  • 2004-02. Network biology: understanding the cell's functional organization in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8

    DOI

    http://dx.doi.org/10.1038/s41598-019-40167-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112544072

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30837613


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Logistic Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, Hunan, China", 
              "id": "http://www.grid.ac/institutes/grid.67293.39", 
              "name": [
                "Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Danyang", 
            "id": "sg:person.012464726644.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464726644.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.24516.34", 
              "name": [
                "Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Zeyu", 
            "id": "sg:person.011667346244.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667346244.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glass", 
            "givenName": "Kimberly", 
            "id": "sg:person.01356601131.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356601131.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Su", 
            "givenName": "Jessica", 
            "id": "sg:person.01262023142.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262023142.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DeMeo", 
            "givenName": "Dawn L.", 
            "id": "sg:person.01240644560.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240644560.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tantisira", 
            "givenName": "Kelan", 
            "id": "sg:person.01365124305.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365124305.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weiss", 
            "givenName": "Scott T.", 
            "id": "sg:person.013015301602.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301602.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qiu", 
            "givenName": "Weiliang", 
            "id": "sg:person.01027324561.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027324561.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13104-016-2331-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014027769", 
              "https://doi.org/10.1186/s13104-016-2331-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043341870", 
              "https://doi.org/10.1038/nature02871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018231980", 
              "https://doi.org/10.1038/nrg1272"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-05", 
        "datePublishedReg": "2019-03-05", 
        "description": "The interplay among microRNAs (miRNAs) plays an important role in the developments of complex human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential correlation network is a powerful tool to investigate the differences of co-expression networks between cases and controls. To construct a differential correlation network, the Fisher's Z-transformation test is usually used. However, the Fisher's Z-transformation test requires the normality assumption, the violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements for Fisher's Z test have been proposed. However, these methods are too computationally intensive to be used to construct differential correlation networks for high-throughput genomic data. In this article, we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) overall performed better than other methods.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-40167-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2542043", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4243946", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5503329", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6376789", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4317405", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "differential correlation network", 
          "new statistical method", 
          "inflated type I error rates", 
          "high-throughput genomic data", 
          "normality assumption", 
          "Type I error rates", 
          "statistical methods", 
          "correlation network", 
          "systematic simulation study", 
          "simulation study", 
          "Fisher's z", 
          "network", 
          "error rate", 
          "complex human diseases", 
          "powerful tool", 
          "genomic data", 
          "data analysis", 
          "assumption", 
          "Fisher's Z test", 
          "method", 
          "tool", 
          "violation", 
          "interplay", 
          "interaction", 
          "cases", 
          "co-expression network", 
          "data", 
          "control", 
          "improvement", 
          "analysis", 
          "important role", 
          "development", 
          "article", 
          "test", 
          "rate", 
          "study", 
          "differences", 
          "role", 
          "human diseases", 
          "microRNAs", 
          "miRNAs", 
          "transformation test", 
          "disease", 
          "I error rate", 
          "bootstrapping-based improvements", 
          "'s Z test", 
          "novel robust equal-correlation tests", 
          "robust equal-correlation tests", 
          "equal-correlation tests", 
          "Constructing Robust Differential Correlation Networks", 
          "Robust Differential Correlation Networks"
        ], 
        "name": "New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs", 
        "pagination": "3499", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112544072"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-40167-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30837613"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-40167-8", 
          "https://app.dimensions.ai/details/publication/pub.1112544072"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_823.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-40167-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      22 PREDICATES      86 URIs      75 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-40167-8 schema:about N4359fc41e6004b5eade9843dbb282520
    2 N4b9f277e5dba4bbd88fcc971f1e7a939
    3 N6ba08246e00b4d6fbe32438c823de7ae
    4 N8092970ad70744688e1a6f911281404e
    5 N87d652abd4a04b2d9f85b138ef755345
    6 Nd5b952256d3a4bafa9d33226626a185f
    7 Ndd2cb36e5a26457ab277442bda3f5706
    8 anzsrc-for:01
    9 anzsrc-for:0104
    10 schema:author N6ff64828f9374aa1a9e1052416848220
    11 schema:citation sg:pub.10.1038/nature02871
    12 sg:pub.10.1038/nrg1272
    13 sg:pub.10.1186/s13104-016-2331-9
    14 schema:datePublished 2019-03-05
    15 schema:datePublishedReg 2019-03-05
    16 schema:description The interplay among microRNAs (miRNAs) plays an important role in the developments of complex human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential correlation network is a powerful tool to investigate the differences of co-expression networks between cases and controls. To construct a differential correlation network, the Fisher's Z-transformation test is usually used. However, the Fisher's Z-transformation test requires the normality assumption, the violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements for Fisher's Z test have been proposed. However, these methods are too computationally intensive to be used to construct differential correlation networks for high-throughput genomic data. In this article, we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) overall performed better than other methods.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N35a912c4980f45f98bffceada57a3e01
    21 Ndbfb6f8ee40946e2af69c20f171b12b9
    22 sg:journal.1045337
    23 schema:keywords 's Z test
    24 Constructing Robust Differential Correlation Networks
    25 Fisher's Z test
    26 Fisher's z
    27 I error rate
    28 Robust Differential Correlation Networks
    29 Type I error rates
    30 analysis
    31 article
    32 assumption
    33 bootstrapping-based improvements
    34 cases
    35 co-expression network
    36 complex human diseases
    37 control
    38 correlation network
    39 data
    40 data analysis
    41 development
    42 differences
    43 differential correlation network
    44 disease
    45 equal-correlation tests
    46 error rate
    47 genomic data
    48 high-throughput genomic data
    49 human diseases
    50 important role
    51 improvement
    52 inflated type I error rates
    53 interaction
    54 interplay
    55 method
    56 miRNAs
    57 microRNAs
    58 network
    59 new statistical method
    60 normality assumption
    61 novel robust equal-correlation tests
    62 powerful tool
    63 rate
    64 robust equal-correlation tests
    65 role
    66 simulation study
    67 statistical methods
    68 study
    69 systematic simulation study
    70 test
    71 tool
    72 transformation test
    73 violation
    74 schema:name New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs
    75 schema:pagination 3499
    76 schema:productId N0b3b79aaf7a1413484122ccd5f1f6cc4
    77 N65fb4a198d0e40409ee2d0642e36fb03
    78 N8527ccff16de4c0d806ba26e1102b220
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544072
    80 https://doi.org/10.1038/s41598-019-40167-8
    81 schema:sdDatePublished 2021-12-01T19:47
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Ne3c941c78fd6489485d130d9a4ab0e2b
    84 schema:url https://doi.org/10.1038/s41598-019-40167-8
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N0b3b79aaf7a1413484122ccd5f1f6cc4 schema:name doi
    89 schema:value 10.1038/s41598-019-40167-8
    90 rdf:type schema:PropertyValue
    91 N1cc180cef1d44e41a5620d1b68a4b301 rdf:first sg:person.01262023142.55
    92 rdf:rest N3e6da3397f40436f9e10da8d5002549c
    93 N35a912c4980f45f98bffceada57a3e01 schema:volumeNumber 9
    94 rdf:type schema:PublicationVolume
    95 N3e6da3397f40436f9e10da8d5002549c rdf:first sg:person.01240644560.19
    96 rdf:rest Nb7724b47dc254f2e823f1b2ef2cc2ac3
    97 N4359fc41e6004b5eade9843dbb282520 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Logistic Models
    99 rdf:type schema:DefinedTerm
    100 N4b9f277e5dba4bbd88fcc971f1e7a939 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Databases, Genetic
    102 rdf:type schema:DefinedTerm
    103 N65fb4a198d0e40409ee2d0642e36fb03 schema:name dimensions_id
    104 schema:value pub.1112544072
    105 rdf:type schema:PropertyValue
    106 N6ba08246e00b4d6fbe32438c823de7ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Neoplasms
    108 rdf:type schema:DefinedTerm
    109 N6ff64828f9374aa1a9e1052416848220 rdf:first sg:person.012464726644.23
    110 rdf:rest Nf738cb6420b84367970b2cc9becabdc7
    111 N8092970ad70744688e1a6f911281404e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Gene Regulatory Networks
    113 rdf:type schema:DefinedTerm
    114 N8527ccff16de4c0d806ba26e1102b220 schema:name pubmed_id
    115 schema:value 30837613
    116 rdf:type schema:PropertyValue
    117 N87d652abd4a04b2d9f85b138ef755345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Humans
    119 rdf:type schema:DefinedTerm
    120 N8ff9974651f0490da853742ef7ed57fe rdf:first sg:person.01356601131.10
    121 rdf:rest N1cc180cef1d44e41a5620d1b68a4b301
    122 Nb7724b47dc254f2e823f1b2ef2cc2ac3 rdf:first sg:person.01365124305.67
    123 rdf:rest Ne7c7d072deb44cc79585abeba53254fc
    124 Nd5b952256d3a4bafa9d33226626a185f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name MicroRNAs
    126 rdf:type schema:DefinedTerm
    127 Ndbfb6f8ee40946e2af69c20f171b12b9 schema:issueNumber 1
    128 rdf:type schema:PublicationIssue
    129 Ndd2cb36e5a26457ab277442bda3f5706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Algorithms
    131 rdf:type schema:DefinedTerm
    132 Ne3c941c78fd6489485d130d9a4ab0e2b schema:name Springer Nature - SN SciGraph project
    133 rdf:type schema:Organization
    134 Ne7c7d072deb44cc79585abeba53254fc rdf:first sg:person.013015301602.70
    135 rdf:rest Nf97f5e2e577644458696969c58054c78
    136 Nf738cb6420b84367970b2cc9becabdc7 rdf:first sg:person.011667346244.27
    137 rdf:rest N8ff9974651f0490da853742ef7ed57fe
    138 Nf97f5e2e577644458696969c58054c78 rdf:first sg:person.01027324561.20
    139 rdf:rest rdf:nil
    140 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Mathematical Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Statistics
    145 rdf:type schema:DefinedTerm
    146 sg:grant.2542043 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40167-8
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.4243946 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40167-8
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.4317405 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40167-8
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.5503329 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40167-8
    153 rdf:type schema:MonetaryGrant
    154 sg:grant.6376789 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40167-8
    155 rdf:type schema:MonetaryGrant
    156 sg:journal.1045337 schema:issn 2045-2322
    157 schema:name Scientific Reports
    158 schema:publisher Springer Nature
    159 rdf:type schema:Periodical
    160 sg:person.01027324561.20 schema:affiliation grid-institutes:grid.38142.3c
    161 schema:familyName Qiu
    162 schema:givenName Weiliang
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027324561.20
    164 rdf:type schema:Person
    165 sg:person.011667346244.27 schema:affiliation grid-institutes:grid.24516.34
    166 schema:familyName Zhang
    167 schema:givenName Zeyu
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667346244.27
    169 rdf:type schema:Person
    170 sg:person.01240644560.19 schema:affiliation grid-institutes:grid.38142.3c
    171 schema:familyName DeMeo
    172 schema:givenName Dawn L.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240644560.19
    174 rdf:type schema:Person
    175 sg:person.012464726644.23 schema:affiliation grid-institutes:grid.67293.39
    176 schema:familyName Yu
    177 schema:givenName Danyang
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012464726644.23
    179 rdf:type schema:Person
    180 sg:person.01262023142.55 schema:affiliation grid-institutes:grid.38142.3c
    181 schema:familyName Su
    182 schema:givenName Jessica
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262023142.55
    184 rdf:type schema:Person
    185 sg:person.013015301602.70 schema:affiliation grid-institutes:grid.38142.3c
    186 schema:familyName Weiss
    187 schema:givenName Scott T.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301602.70
    189 rdf:type schema:Person
    190 sg:person.01356601131.10 schema:affiliation grid-institutes:grid.38142.3c
    191 schema:familyName Glass
    192 schema:givenName Kimberly
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356601131.10
    194 rdf:type schema:Person
    195 sg:person.01365124305.67 schema:affiliation grid-institutes:grid.38142.3c
    196 schema:familyName Tantisira
    197 schema:givenName Kelan
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365124305.67
    199 rdf:type schema:Person
    200 sg:pub.10.1038/nature02871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341870
    201 https://doi.org/10.1038/nature02871
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
    204 https://doi.org/10.1038/nrg1272
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/s13104-016-2331-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014027769
    207 https://doi.org/10.1186/s13104-016-2331-9
    208 rdf:type schema:CreativeWork
    209 grid-institutes:grid.24516.34 schema:alternateName Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
    210 schema:name Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
    211 rdf:type schema:Organization
    212 grid-institutes:grid.38142.3c schema:alternateName Channing Division of Network Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, USA
    213 schema:name Channing Division of Network Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, USA
    214 rdf:type schema:Organization
    215 grid-institutes:grid.67293.39 schema:alternateName Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, Hunan, China
    216 schema:name Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, Hunan, China
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...