New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Danyang Yu, Zeyu Zhang, Kimberly Glass, Jessica Su, Dawn L. DeMeo, Kelan Tantisira, Scott T. Weiss, Weiliang Qiu

ABSTRACT

The interplay among microRNAs (miRNAs) plays an important role in the developments of complex human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential correlation network is a powerful tool to investigate the differences of co-expression networks between cases and controls. To construct a differential correlation network, the Fisher's Z-transformation test is usually used. However, the Fisher's Z-transformation test requires the normality assumption, the violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements for Fisher's Z test have been proposed. However, these methods are too computationally intensive to be used to construct differential correlation networks for high-throughput genomic data. In this article, we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) overall performed better than other methods. More... »

PAGES

3499

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8

DOI

http://dx.doi.org/10.1038/s41598-019-40167-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544072

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30837613


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, Hunan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Danyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zeyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glass", 
        "givenName": "Kimberly", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Jessica", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeMeo", 
        "givenName": "Dawn L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tantisira", 
        "givenName": "Kelan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Scott T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital/Harvard Medical School, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Weiliang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1142/9789814447973_0008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001697295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181ce3afd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007939120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13104-016-2331-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014027769", 
          "https://doi.org/10.1186/s13104-016-2331-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13104-016-2331-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014027769", 
          "https://doi.org/10.1186/s13104-016-2331-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/1082-989x.12.4.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030250154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118150702.ch11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030875423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031047936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(04)00045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031254572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013699998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036427477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0042390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038619074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610910903289151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039113120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341870", 
          "https://doi.org/10.1038/nature02871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341870", 
          "https://doi.org/10.1038/nature02871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2010.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046034441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(02)00366-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050540076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(02)00366-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050540076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051205681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053680972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2669876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070052444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or.2015.3956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071533735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or.2015.3956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071533735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078505522", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078615495", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbx130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091808344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbx130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091808344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbx130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091808344"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The interplay among microRNAs (miRNAs) plays an important role in the developments of complex human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential correlation network is a powerful tool to investigate the differences of co-expression networks between cases and controls. To construct a differential correlation network, the Fisher's Z-transformation test is usually used. However, the Fisher's Z-transformation test requires the normality assumption, the violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements for Fisher's Z test have been proposed. However, these methods are too computationally intensive to be used to construct differential correlation networks for high-throughput genomic data. In this article, we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) overall performed better than other methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40167-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs", 
    "pagination": "3499", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f666ae8f6eed153f5f395f89faae8aa1a015f8ea4a5c6978e19882b67ddbebf2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30837613"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40167-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544072"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40167-8", 
      "https://app.dimensions.ai/details/publication/pub.1112544072"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11724_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40167-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40167-8'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40167-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nffd73268d08849bc8486d68259c086f8
4 schema:citation sg:pub.10.1038/nature02871
5 sg:pub.10.1038/nrg1272
6 sg:pub.10.1186/s13104-016-2331-9
7 https://app.dimensions.ai/details/publication/pub.1078505522
8 https://app.dimensions.ai/details/publication/pub.1078615495
9 https://doi.org/10.1002/9781118150702.ch11
10 https://doi.org/10.1016/j.tig.2010.05.001
11 https://doi.org/10.1016/s0092-8674(04)00045-5
12 https://doi.org/10.1016/s0167-9473(02)00366-3
13 https://doi.org/10.1037/1082-989x.12.4.399
14 https://doi.org/10.1080/03610910903289151
15 https://doi.org/10.1093/bib/bbx130
16 https://doi.org/10.1093/nar/gkr130
17 https://doi.org/10.1097/jto.0b013e3181ce3afd
18 https://doi.org/10.1126/science.1087447
19 https://doi.org/10.1142/9789814447973_0008
20 https://doi.org/10.1214/aos/1013699998
21 https://doi.org/10.1371/journal.pcbi.1004565
22 https://doi.org/10.1371/journal.pone.0042390
23 https://doi.org/10.2307/2669876
24 https://doi.org/10.3892/or.2015.3956
25 schema:datePublished 2019-12
26 schema:datePublishedReg 2019-12-01
27 schema:description The interplay among microRNAs (miRNAs) plays an important role in the developments of complex human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential correlation network is a powerful tool to investigate the differences of co-expression networks between cases and controls. To construct a differential correlation network, the Fisher's Z-transformation test is usually used. However, the Fisher's Z-transformation test requires the normality assumption, the violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements for Fisher's Z test have been proposed. However, these methods are too computationally intensive to be used to construct differential correlation networks for high-throughput genomic data. In this article, we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) overall performed better than other methods.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N7e0bbb943e844805b1c6d6ac40356489
32 Na68ee429cbb94cfa90ba52f7436b8a84
33 sg:journal.1045337
34 schema:name New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs
35 schema:pagination 3499
36 schema:productId N2460a9a1501947b9b7567f3031dd61cc
37 N6875c00f59b141dbaf8e367fd884ee11
38 Nbdaccd47870b4a35bc40123c3cd7d7cc
39 Nd10c742b81dd46e2bed449d9399ebb2a
40 Ne8dca2138ce24ab89b13b1025db1d616
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544072
42 https://doi.org/10.1038/s41598-019-40167-8
43 schema:sdDatePublished 2019-04-11T11:21
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ne92997e204a44fd091a6be2a014a6caa
46 schema:url https://www.nature.com/articles/s41598-019-40167-8
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N09cd3ab6d86a45e4a548a9d11fea2ba8 rdf:first N6e83491c34794c5897bc5acf870040ab
51 rdf:rest N30e729282b1049c581a5c8758218d076
52 N14a85422cd1f43dfb6a137979f4a68f1 rdf:first N80ec3ab4ced44b139319bdaec0259b79
53 rdf:rest N09cd3ab6d86a45e4a548a9d11fea2ba8
54 N1f36cff590944864934cf2b71622cf06 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
55 schema:familyName Weiss
56 schema:givenName Scott T.
57 rdf:type schema:Person
58 N2460a9a1501947b9b7567f3031dd61cc schema:name doi
59 schema:value 10.1038/s41598-019-40167-8
60 rdf:type schema:PropertyValue
61 N2feef0c1fd3a4c6482b5acf58e305ef0 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
62 schema:familyName Yu
63 schema:givenName Danyang
64 rdf:type schema:Person
65 N30e729282b1049c581a5c8758218d076 rdf:first Nac8433b4fb5f43ef8bb0117cd274f187
66 rdf:rest N5669bc530a1e41d69e9a1addcf397ebd
67 N49cb025577d245f093a73ee9f1d7f3f7 rdf:first Nec764697218e4144b20d9df19194c922
68 rdf:rest Nc6c0a67a243b4bcea0cb4c7f55298bba
69 N5669bc530a1e41d69e9a1addcf397ebd rdf:first N1f36cff590944864934cf2b71622cf06
70 rdf:rest N72008c5a3a4b4d4282b82f00ccea4ef4
71 N6875c00f59b141dbaf8e367fd884ee11 schema:name nlm_unique_id
72 schema:value 101563288
73 rdf:type schema:PropertyValue
74 N6e83491c34794c5897bc5acf870040ab schema:affiliation https://www.grid.ac/institutes/grid.62560.37
75 schema:familyName DeMeo
76 schema:givenName Dawn L.
77 rdf:type schema:Person
78 N72008c5a3a4b4d4282b82f00ccea4ef4 rdf:first Ndc09487b4a6f4ffd866ac1daba9f8732
79 rdf:rest rdf:nil
80 N7e0bbb943e844805b1c6d6ac40356489 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N80ec3ab4ced44b139319bdaec0259b79 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
83 schema:familyName Su
84 schema:givenName Jessica
85 rdf:type schema:Person
86 Na68ee429cbb94cfa90ba52f7436b8a84 schema:volumeNumber 9
87 rdf:type schema:PublicationVolume
88 Nac8433b4fb5f43ef8bb0117cd274f187 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
89 schema:familyName Tantisira
90 schema:givenName Kelan
91 rdf:type schema:Person
92 Nbdaccd47870b4a35bc40123c3cd7d7cc schema:name dimensions_id
93 schema:value pub.1112544072
94 rdf:type schema:PropertyValue
95 Nc6c0a67a243b4bcea0cb4c7f55298bba rdf:first Nd2354ae1a1e2444cb43217b7e8ba7c86
96 rdf:rest N14a85422cd1f43dfb6a137979f4a68f1
97 Nd10c742b81dd46e2bed449d9399ebb2a schema:name pubmed_id
98 schema:value 30837613
99 rdf:type schema:PropertyValue
100 Nd2354ae1a1e2444cb43217b7e8ba7c86 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
101 schema:familyName Glass
102 schema:givenName Kimberly
103 rdf:type schema:Person
104 Ndc09487b4a6f4ffd866ac1daba9f8732 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
105 schema:familyName Qiu
106 schema:givenName Weiliang
107 rdf:type schema:Person
108 Ne8dca2138ce24ab89b13b1025db1d616 schema:name readcube_id
109 schema:value f666ae8f6eed153f5f395f89faae8aa1a015f8ea4a5c6978e19882b67ddbebf2
110 rdf:type schema:PropertyValue
111 Ne92997e204a44fd091a6be2a014a6caa schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Nec764697218e4144b20d9df19194c922 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
114 schema:familyName Zhang
115 schema:givenName Zeyu
116 rdf:type schema:Person
117 Nffd73268d08849bc8486d68259c086f8 rdf:first N2feef0c1fd3a4c6482b5acf58e305ef0
118 rdf:rest N49cb025577d245f093a73ee9f1d7f3f7
119 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information and Computing Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
123 schema:name Artificial Intelligence and Image Processing
124 rdf:type schema:DefinedTerm
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 rdf:type schema:Periodical
128 sg:pub.10.1038/nature02871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341870
129 https://doi.org/10.1038/nature02871
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
132 https://doi.org/10.1038/nrg1272
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/s13104-016-2331-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014027769
135 https://doi.org/10.1186/s13104-016-2331-9
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1078505522 schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1078615495 schema:CreativeWork
139 https://doi.org/10.1002/9781118150702.ch11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030875423
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.tig.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046034441
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0092-8674(04)00045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031254572
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0167-9473(02)00366-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050540076
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1037/1082-989x.12.4.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250154
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/03610910903289151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039113120
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bib/bbx130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091808344
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/nar/gkr130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053680972
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1097/jto.0b013e3181ce3afd schema:sameAs https://app.dimensions.ai/details/publication/pub.1007939120
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1087447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031047936
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1142/9789814447973_0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001697295
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1214/aos/1013699998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036427477
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1371/journal.pcbi.1004565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051205681
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1371/journal.pone.0042390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038619074
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2307/2669876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070052444
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3892/or.2015.3956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071533735
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
172 schema:name Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
175 schema:name Channing Division of Network Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
178 schema:name Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, Hunan, China
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...