Evaluation of dose point kernel rescaling methods for nanoscale dose estimation around gold nanoparticles using Geant4 Monte Carlo simulations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sandun Jayarathna, Nivedh Manohar, Foiez Ahmed, Sunil Krishnan, Sang Hyun Cho

ABSTRACT

The absence of proper nanoscale experimental techniques to investigate the dose-enhancing properties of gold nanoparticles (GNPs) interacting with radiation has prompted the development of various Monte Carlo (MC)-based nanodosimetry techniques that generally require considerable computational knowledge, time and specific tools/platforms. Thus, this study investigated a hybrid computational framework, based on the electron dose point kernel (DPK) method, by combining Geant4 MC simulations with an analytical approach. This hybrid framework was applied to estimate the dose distributions around GNPs due to the secondary electrons emitted from GNPs irradiated by various photon sources. Specifically, the equivalent path length approximation was used to rescale the homogeneous DPKs for heterogeneous GNPs embedded in water/tissue. Compared with Geant4 simulations, the hybrid framework halved calculation time while utilizing fewer computer resources, and also resulted in mean discrepancies less than 20 and 5% for Yb-169 and 6 MV photon irradiation, respectively. Its appropriateness and computational efficiency in handling more complex cases were also demonstrated using an example derived from a transmission electron microscopy image of a cancer cell containing internalized GNPs. Overall, the currently proposed hybrid computational framework can be a practical alternative to full-fledged MC simulations, benefiting a wide range of GNP- and radiation-related applications. More... »

PAGES

3583

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40166-9

DOI

http://dx.doi.org/10.1038/s41598-019-40166-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544071

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30837578


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayarathna", 
        "givenName": "Sandun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Radiation Oncology, Emory University, Winship Cancer Institute, 30322, Atlanta, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manohar", 
        "givenName": "Nivedh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmed", 
        "givenName": "Foiez", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnan", 
        "givenName": "Sunil", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA", 
            "Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Sang Hyun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep19442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000104100", 
          "https://doi.org/10.1038/srep19442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3455703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001804451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/29/295101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/29/295101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2015.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2015.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2015.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/59/24/7675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1829172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008182181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/nnm.12.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012099027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.08.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012228085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nano.2014.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014561391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-806x(03)00475-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021861963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/ijn.s111320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026506378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1667/rr1984.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027425650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12546-011-9054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029770019", 
          "https://doi.org/10.1007/s12546-011-9054-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2016.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030677557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(03)01368-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(03)01368-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3539623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031211811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apradiso.2013.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033578938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033932965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-003-1131-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034197129", 
          "https://doi.org/10.1007/s00259-003-1131-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3586038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036637127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/ijn.s114025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040959614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-physchem-040513-103605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046300394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3056457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046789529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052597086", 
          "https://doi.org/10.1038/srep00018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/13/4/310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059019135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/49/18/n03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/15/n01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/15/n01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/16/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/16/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/16/6195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/61/16/5993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059031496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rpd/ncs204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060019125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/sj.41.0025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063184673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/0007-1285-31-370-518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064545482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3573140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070376296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081163877", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nr01024a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084746050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nr01024a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084746050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acm2.12111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085878170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/aa87fd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091330232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-18304-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099865026", 
          "https://doi.org/10.1038/s41598-017-18304-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420033250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109411007"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The absence of proper nanoscale experimental techniques to investigate the dose-enhancing properties of gold nanoparticles (GNPs) interacting with radiation has prompted the development of various Monte Carlo (MC)-based nanodosimetry techniques that generally require considerable computational knowledge, time and specific tools/platforms. Thus, this study investigated a hybrid computational framework, based on the electron dose point kernel (DPK) method, by combining Geant4 MC simulations with an analytical approach. This hybrid framework was applied to estimate the dose distributions around GNPs due to the secondary electrons emitted from GNPs irradiated by various photon sources. Specifically, the equivalent path length approximation was used to rescale the homogeneous DPKs for heterogeneous GNPs embedded in water/tissue. Compared with Geant4 simulations, the hybrid framework halved calculation time while utilizing fewer computer resources, and also resulted in mean discrepancies less than 20 and 5% for Yb-169 and 6 MV photon irradiation, respectively. Its appropriateness and computational efficiency in handling more complex cases were also demonstrated using an example derived from a transmission electron microscopy image of a cancer cell containing internalized GNPs. Overall, the currently proposed hybrid computational framework can be a practical alternative to full-fledged MC simulations, benefiting a wide range of GNP- and radiation-related applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40166-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2481250", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7051714", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Evaluation of dose point kernel rescaling methods for nanoscale dose estimation around gold nanoparticles using Geant4 Monte Carlo simulations", 
    "pagination": "3583", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c2efc0cff7e45b684a8adfb58563b792b7e51c32914b998de96d64c24579b68"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30837578"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40166-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40166-9", 
      "https://app.dimensions.ai/details/publication/pub.1112544071"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11734_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40166-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40166-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40166-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40166-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40166-9'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40166-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0e5dd27368764a0189792a8dd7af293e
4 schema:citation sg:pub.10.1007/s00259-003-1131-3
5 sg:pub.10.1007/s12546-011-9054-5
6 sg:pub.10.1038/s41598-017-18304-y
7 sg:pub.10.1038/srep00018
8 sg:pub.10.1038/srep19442
9 https://app.dimensions.ai/details/publication/pub.1081163877
10 https://doi.org/10.1002/acm2.12111
11 https://doi.org/10.1016/j.apradiso.2013.01.037
12 https://doi.org/10.1016/j.ijrobp.2010.08.044
13 https://doi.org/10.1016/j.ijrobp.2015.09.032
14 https://doi.org/10.1016/j.nano.2014.12.016
15 https://doi.org/10.1016/j.nimb.2016.02.005
16 https://doi.org/10.1016/s0168-9002(03)01368-8
17 https://doi.org/10.1016/s0969-806x(03)00475-4
18 https://doi.org/10.1039/c7nr01024a
19 https://doi.org/10.1088/0031-9155/13/4/310
20 https://doi.org/10.1088/0031-9155/49/18/n03
21 https://doi.org/10.1088/0031-9155/50/15/n01
22 https://doi.org/10.1088/0031-9155/54/16/004
23 https://doi.org/10.1088/0031-9155/59/24/7675
24 https://doi.org/10.1088/0031-9155/60/16/6195
25 https://doi.org/10.1088/0031-9155/61/16/5993
26 https://doi.org/10.1088/0957-4484/21/29/295101
27 https://doi.org/10.1088/1361-6560/aa87fd
28 https://doi.org/10.1093/nar/gkp889
29 https://doi.org/10.1093/rpd/ncs204
30 https://doi.org/10.1118/1.1829172
31 https://doi.org/10.1118/1.3056457
32 https://doi.org/10.1118/1.3455703
33 https://doi.org/10.1118/1.3539623
34 https://doi.org/10.1118/1.3586038
35 https://doi.org/10.1146/annurev-physchem-040513-103605
36 https://doi.org/10.1147/sj.41.0025
37 https://doi.org/10.1201/9781420033250
38 https://doi.org/10.1259/0007-1285-31-370-518
39 https://doi.org/10.1667/rr1984.1
40 https://doi.org/10.2147/ijn.s111320
41 https://doi.org/10.2147/ijn.s114025
42 https://doi.org/10.2217/nnm.12.165
43 https://doi.org/10.2307/3573140
44 schema:datePublished 2019-12
45 schema:datePublishedReg 2019-12-01
46 schema:description The absence of proper nanoscale experimental techniques to investigate the dose-enhancing properties of gold nanoparticles (GNPs) interacting with radiation has prompted the development of various Monte Carlo (MC)-based nanodosimetry techniques that generally require considerable computational knowledge, time and specific tools/platforms. Thus, this study investigated a hybrid computational framework, based on the electron dose point kernel (DPK) method, by combining Geant4 MC simulations with an analytical approach. This hybrid framework was applied to estimate the dose distributions around GNPs due to the secondary electrons emitted from GNPs irradiated by various photon sources. Specifically, the equivalent path length approximation was used to rescale the homogeneous DPKs for heterogeneous GNPs embedded in water/tissue. Compared with Geant4 simulations, the hybrid framework halved calculation time while utilizing fewer computer resources, and also resulted in mean discrepancies less than 20 and 5% for Yb-169 and 6 MV photon irradiation, respectively. Its appropriateness and computational efficiency in handling more complex cases were also demonstrated using an example derived from a transmission electron microscopy image of a cancer cell containing internalized GNPs. Overall, the currently proposed hybrid computational framework can be a practical alternative to full-fledged MC simulations, benefiting a wide range of GNP- and radiation-related applications.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N2cb7c63e41824651959d127c8c6156de
51 Nb1ffe0d062874bebb66d848811b2047c
52 sg:journal.1045337
53 schema:name Evaluation of dose point kernel rescaling methods for nanoscale dose estimation around gold nanoparticles using Geant4 Monte Carlo simulations
54 schema:pagination 3583
55 schema:productId Na86fdf9295164858b50cc643e5da817e
56 Nadc5406613df4231a84ab6a24b2f6300
57 Nbfe5909302c6487b89052bdaa033c543
58 Nc9d7a765dd8348f19463407962d224d3
59 Nf68820f41bc5493dae9a4326800692fa
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544071
61 https://doi.org/10.1038/s41598-019-40166-9
62 schema:sdDatePublished 2019-04-11T11:22
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nd7b15dd6989a42b392a17e6029791028
65 schema:url https://www.nature.com/articles/s41598-019-40166-9
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0e5dd27368764a0189792a8dd7af293e rdf:first N850cdb01b6ec4aaf9c0acf6274965754
70 rdf:rest Nfab8407c0e854196abff84d095f14675
71 N18060d8766994473935a1980c44627b2 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
72 schema:familyName Krishnan
73 schema:givenName Sunil
74 rdf:type schema:Person
75 N2cb7c63e41824651959d127c8c6156de schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N2e99d19dc5fa4af59e4e38c0b0899eb9 rdf:first N428adfcb12b0407184eb8e12fc3866ec
78 rdf:rest N8ba3d93f362c441cb0329ab75f6f85cf
79 N428adfcb12b0407184eb8e12fc3866ec schema:affiliation https://www.grid.ac/institutes/grid.240145.6
80 schema:familyName Ahmed
81 schema:givenName Foiez
82 rdf:type schema:Person
83 N46f0d098981643c895d5b800a25318ce schema:affiliation https://www.grid.ac/institutes/grid.189967.8
84 schema:familyName Manohar
85 schema:givenName Nivedh
86 rdf:type schema:Person
87 N74010f2a45fb4ae3b863cf419e56029a schema:affiliation https://www.grid.ac/institutes/grid.240145.6
88 schema:familyName Cho
89 schema:givenName Sang Hyun
90 rdf:type schema:Person
91 N850cdb01b6ec4aaf9c0acf6274965754 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
92 schema:familyName Jayarathna
93 schema:givenName Sandun
94 rdf:type schema:Person
95 N8ba3d93f362c441cb0329ab75f6f85cf rdf:first N18060d8766994473935a1980c44627b2
96 rdf:rest Na8f35f9712c74a099135d75999b29f5c
97 Na86fdf9295164858b50cc643e5da817e schema:name dimensions_id
98 schema:value pub.1112544071
99 rdf:type schema:PropertyValue
100 Na8f35f9712c74a099135d75999b29f5c rdf:first N74010f2a45fb4ae3b863cf419e56029a
101 rdf:rest rdf:nil
102 Nadc5406613df4231a84ab6a24b2f6300 schema:name nlm_unique_id
103 schema:value 101563288
104 rdf:type schema:PropertyValue
105 Nb1ffe0d062874bebb66d848811b2047c schema:volumeNumber 9
106 rdf:type schema:PublicationVolume
107 Nbfe5909302c6487b89052bdaa033c543 schema:name pubmed_id
108 schema:value 30837578
109 rdf:type schema:PropertyValue
110 Nc9d7a765dd8348f19463407962d224d3 schema:name readcube_id
111 schema:value 3c2efc0cff7e45b684a8adfb58563b792b7e51c32914b998de96d64c24579b68
112 rdf:type schema:PropertyValue
113 Nd7b15dd6989a42b392a17e6029791028 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nf68820f41bc5493dae9a4326800692fa schema:name doi
116 schema:value 10.1038/s41598-019-40166-9
117 rdf:type schema:PropertyValue
118 Nfab8407c0e854196abff84d095f14675 rdf:first N46f0d098981643c895d5b800a25318ce
119 rdf:rest N2e99d19dc5fa4af59e4e38c0b0899eb9
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
124 schema:name Artificial Intelligence and Image Processing
125 rdf:type schema:DefinedTerm
126 sg:grant.2481250 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40166-9
127 rdf:type schema:MonetaryGrant
128 sg:grant.7051714 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40166-9
129 rdf:type schema:MonetaryGrant
130 sg:journal.1045337 schema:issn 2045-2322
131 schema:name Scientific Reports
132 rdf:type schema:Periodical
133 sg:pub.10.1007/s00259-003-1131-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034197129
134 https://doi.org/10.1007/s00259-003-1131-3
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s12546-011-9054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029770019
137 https://doi.org/10.1007/s12546-011-9054-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/s41598-017-18304-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099865026
140 https://doi.org/10.1038/s41598-017-18304-y
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/srep00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052597086
143 https://doi.org/10.1038/srep00018
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/srep19442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000104100
146 https://doi.org/10.1038/srep19442
147 rdf:type schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1081163877 schema:CreativeWork
149 https://doi.org/10.1002/acm2.12111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085878170
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.apradiso.2013.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033578938
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijrobp.2010.08.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012228085
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijrobp.2015.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006803086
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.nano.2014.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014561391
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.nimb.2016.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030677557
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0168-9002(03)01368-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775608
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0969-806x(03)00475-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861963
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1039/c7nr01024a schema:sameAs https://app.dimensions.ai/details/publication/pub.1084746050
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0031-9155/13/4/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059019135
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0031-9155/49/18/n03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025306
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0031-9155/50/15/n01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025675
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1088/0031-9155/54/16/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027742
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/0031-9155/59/24/7675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328140
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1088/0031-9155/60/16/6195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030911
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0031-9155/61/16/5993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031496
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/0957-4484/21/29/295101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003813397
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/1361-6560/aa87fd schema:sameAs https://app.dimensions.ai/details/publication/pub.1091330232
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkp889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033932965
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/rpd/ncs204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060019125
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1118/1.1829172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008182181
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1118/1.3056457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046789529
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1118/1.3455703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001804451
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1118/1.3539623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031211811
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1118/1.3586038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036637127
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1146/annurev-physchem-040513-103605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046300394
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1147/sj.41.0025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063184673
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1201/9781420033250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109411007
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1259/0007-1285-31-370-518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064545482
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1667/rr1984.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027425650
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2147/ijn.s111320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026506378
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2147/ijn.s114025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040959614
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2217/nnm.12.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012099027
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2307/3573140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070376296
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.189967.8 schema:alternateName Emory University
218 schema:name Department of Radiation Oncology, Emory University, Winship Cancer Institute, 30322, Atlanta, Georgia, USA
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
221 schema:name Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
222 Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
223 Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...