Comparing the effects of non-homogenous mixing patterns on epidemiological outcomes in equine populations: A mathematical modelling study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Rachael M. Milwid, Terri L. O’Sullivan, Zvonimir Poljak, Marek Laskowski, Amy L. Greer

ABSTRACT

Disease transmission models often assume homogenous mixing. This assumption, however, has the potential to misrepresent the disease dynamics for populations in which contact patterns are non-random. A disease transmission model with an SEIR structure was used to compare the effect of weighted and unweighted empirical equine contact networks to weighted and unweighted theoretical networks generated using random mixing. Equine influenza was used as a case study. Incidence curves generated with the unweighted empirical networks were similar in epidemic duration (5-8 days) and peak incidence (30.8-46.4%). In contrast, the weighted empirical networks resulted in a more pronounced difference between the networks in terms of the epidemic duration (8-15 days) and the peak incidence (5-25%). The incidence curves for the empirical networks were bimodal, while the incidence curves for the theoretical networks were unimodal. The incorporation of vaccination and isolation in the model caused a decrease in the cumulative incidence for each network, however, this effect was only seen at high levels of vaccination and isolation for the complete network. This study highlights the importance of using empirical networks to describe contact patterns within populations that are unlikely to exhibit random mixing such as equine populations. More... »

PAGES

3227

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40151-2

DOI

http://dx.doi.org/10.1038/s41598-019-40151-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112469566

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30824806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Population Medicine, University of Guelph, Guelph, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milwid", 
        "givenName": "Rachael M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Population Medicine, University of Guelph, Guelph, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Sullivan", 
        "givenName": "Terri L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Population Medicine, University of Guelph, Guelph, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poljak", 
        "givenName": "Zvonimir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "York University", 
          "id": "https://www.grid.ac/institutes/grid.21100.32", 
          "name": [
            "Department of Population Medicine, University of Guelph, Guelph, ON, Canada", 
            "Department of Mathematics and Statistics, York University, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laskowski", 
        "givenName": "Marek", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Population Medicine, University of Guelph, Guelph, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greer", 
        "givenName": "Amy L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.prevetmed.2010.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001683744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2009.0030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003827885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0264-410x(03)00156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004941488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0264-410x(03)00156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004941488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2004.2766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005507659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/evj.12104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006460295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-014-0695-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007893314", 
          "https://doi.org/10.1186/s12879-014-0695-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-014-0695-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007893314", 
          "https://doi.org/10.1186/s12879-014-0695-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1421551111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009533662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2005.0042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011887451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(01)02144-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015131004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2007.1100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015848415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-9-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016144881", 
          "https://doi.org/10.1186/1741-7015-9-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2014.0107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017501613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2005.0051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017726907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2006.0129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026074094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-2659.2010.00176.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026281218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-2659.2010.00176.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026281218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2004.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1865-1682.2009.01073.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027907200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1865-1682.2009.01073.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027907200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2012.04.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031310690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035058149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035430543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5877(00)00161-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036291641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01652176.2002.9695127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036924565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036983280", 
          "https://doi.org/10.1038/srep04472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-016-2003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038783212", 
          "https://doi.org/10.1186/s12879-016-2003-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-016-2003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038783212", 
          "https://doi.org/10.1186/s12879-016-2003-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tpb.2004.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039926591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012088459-9/50007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042691378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2006.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050583480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2005.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051760108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ctep.2006.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053139704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268802006829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053873597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268802006829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053873597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s095026880500467x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053927674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0503-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056529360", 
          "https://doi.org/10.1038/scientificamerican0503-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.066112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.066112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.05319-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062713198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139902413829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-7020-5246-0.00027-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083742427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/16-aoas1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084620366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/410/07729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089201898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10888705.2017.1360773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091248857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/evj.12794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100775256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2018.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103238072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epidem.2018.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103238072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prevetmed.2018.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110197663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prevetmed.2018.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110197663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prevetmed.2018.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110197663"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Disease transmission models often assume homogenous mixing. This assumption, however, has the potential to misrepresent the disease dynamics for populations in which contact patterns are non-random. A disease transmission model with an SEIR structure was used to compare the effect of weighted and unweighted empirical equine contact networks to weighted and unweighted theoretical networks generated using random mixing. Equine influenza was used as a case study. Incidence curves generated with the unweighted empirical networks were similar in epidemic duration (5-8 days) and peak incidence (30.8-46.4%). In contrast, the weighted empirical networks resulted in a more pronounced difference between the networks in terms of the epidemic duration (8-15 days) and the peak incidence (5-25%). The incidence curves for the empirical networks were bimodal, while the incidence curves for the theoretical networks were unimodal. The incorporation of vaccination and isolation in the model caused a decrease in the cumulative incidence for each network, however, this effect was only seen at high levels of vaccination and isolation for the complete network. This study highlights the importance of using empirical networks to describe contact patterns within populations that are unlikely to exhibit random mixing such as equine populations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40151-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Comparing the effects of non-homogenous mixing patterns on epidemiological outcomes in equine populations: A mathematical modelling study", 
    "pagination": "3227", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ac3be69b810ae1f9a113ae5f57e1d30bbaa9b6a71f349994c39f3892221f883"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30824806"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40151-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112469566"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40151-2", 
      "https://app.dimensions.ai/details/publication/pub.1112469566"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11701_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40151-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40151-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40151-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40151-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40151-2'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40151-2 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N66ded250b75f4115b72e0e381adbf294
4 schema:citation sg:pub.10.1038/scientificamerican0503-60
5 sg:pub.10.1038/srep04472
6 sg:pub.10.1186/1741-7015-9-87
7 sg:pub.10.1186/s12879-014-0695-9
8 sg:pub.10.1186/s12879-016-2003-3
9 https://doi.org/10.1016/b978-0-7020-5246-0.00027-9
10 https://doi.org/10.1016/b978-012088459-9/50007-8
11 https://doi.org/10.1016/j.epidem.2014.07.003
12 https://doi.org/10.1016/j.epidem.2018.04.001
13 https://doi.org/10.1016/j.jmaa.2004.05.045
14 https://doi.org/10.1016/j.jmaa.2012.04.077
15 https://doi.org/10.1016/j.jtbi.2005.01.011
16 https://doi.org/10.1016/j.prevetmed.2010.02.007
17 https://doi.org/10.1016/j.prevetmed.2018.11.011
18 https://doi.org/10.1016/j.tpb.2004.08.002
19 https://doi.org/10.1016/j.tree.2006.03.013
20 https://doi.org/10.1016/s0167-5877(00)00161-6
21 https://doi.org/10.1016/s0169-5347(01)02144-9
22 https://doi.org/10.1016/s0264-410x(03)00156-7
23 https://doi.org/10.1017/s0950268802006829
24 https://doi.org/10.1017/s095026880500467x
25 https://doi.org/10.1053/j.ctep.2006.03.013
26 https://doi.org/10.1073/pnas.1421551111
27 https://doi.org/10.1080/01652176.2002.9695127
28 https://doi.org/10.1080/10888705.2017.1360773
29 https://doi.org/10.1090/conm/410/07729
30 https://doi.org/10.1098/rsif.2005.0042
31 https://doi.org/10.1098/rsif.2005.0051
32 https://doi.org/10.1098/rsif.2006.0129
33 https://doi.org/10.1098/rsif.2007.1100
34 https://doi.org/10.1098/rsif.2009.0030
35 https://doi.org/10.1098/rspb.2004.2766
36 https://doi.org/10.1098/rstb.2014.0107
37 https://doi.org/10.1103/physreve.64.066112
38 https://doi.org/10.1103/physreve.66.016128
39 https://doi.org/10.1111/evj.12104
40 https://doi.org/10.1111/evj.12794
41 https://doi.org/10.1111/j.1750-2659.2010.00176.x
42 https://doi.org/10.1111/j.1865-1682.2009.01073.x
43 https://doi.org/10.1128/jvi.05319-11
44 https://doi.org/10.1137/s0036139902413829
45 https://doi.org/10.1214/16-aoas1010
46 https://doi.org/10.1371/journal.pcbi.1000280
47 https://doi.org/10.1371/journal.pone.0023176
48 schema:datePublished 2019-12
49 schema:datePublishedReg 2019-12-01
50 schema:description Disease transmission models often assume homogenous mixing. This assumption, however, has the potential to misrepresent the disease dynamics for populations in which contact patterns are non-random. A disease transmission model with an SEIR structure was used to compare the effect of weighted and unweighted empirical equine contact networks to weighted and unweighted theoretical networks generated using random mixing. Equine influenza was used as a case study. Incidence curves generated with the unweighted empirical networks were similar in epidemic duration (5-8 days) and peak incidence (30.8-46.4%). In contrast, the weighted empirical networks resulted in a more pronounced difference between the networks in terms of the epidemic duration (8-15 days) and the peak incidence (5-25%). The incidence curves for the empirical networks were bimodal, while the incidence curves for the theoretical networks were unimodal. The incorporation of vaccination and isolation in the model caused a decrease in the cumulative incidence for each network, however, this effect was only seen at high levels of vaccination and isolation for the complete network. This study highlights the importance of using empirical networks to describe contact patterns within populations that are unlikely to exhibit random mixing such as equine populations.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N17d1442d44d642f1aae8d2b6f7fb761c
55 Nbddd1786c2284578ab0aa661bdc632b4
56 sg:journal.1045337
57 schema:name Comparing the effects of non-homogenous mixing patterns on epidemiological outcomes in equine populations: A mathematical modelling study
58 schema:pagination 3227
59 schema:productId N146391153a64441a89888392ea15a612
60 N2f18ae96dbf3404596a4a2b073c650b8
61 N33fa444835c44cc3b36a34fd92bd243e
62 N37490cd52e3247518bacbf5502cb1e90
63 Nab9a6a9aff964b8eb62df6347d9a9178
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112469566
65 https://doi.org/10.1038/s41598-019-40151-2
66 schema:sdDatePublished 2019-04-11T11:18
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N0e11b328b8004cb28cee73119bba6f51
69 schema:url https://www.nature.com/articles/s41598-019-40151-2
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0212b77ab264476ea4935dd8d05dfd68 schema:affiliation https://www.grid.ac/institutes/grid.21100.32
74 schema:familyName Laskowski
75 schema:givenName Marek
76 rdf:type schema:Person
77 N0e11b328b8004cb28cee73119bba6f51 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N146391153a64441a89888392ea15a612 schema:name pubmed_id
80 schema:value 30824806
81 rdf:type schema:PropertyValue
82 N17d1442d44d642f1aae8d2b6f7fb761c schema:volumeNumber 9
83 rdf:type schema:PublicationVolume
84 N1f943d1b660e4016bf6cd59df74c8323 rdf:first N91406271c7cc477abd646563e37b3f5a
85 rdf:rest Na35b0b0d70804741b1ddb8383737d001
86 N2f18ae96dbf3404596a4a2b073c650b8 schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N33fa444835c44cc3b36a34fd92bd243e schema:name doi
90 schema:value 10.1038/s41598-019-40151-2
91 rdf:type schema:PropertyValue
92 N37490cd52e3247518bacbf5502cb1e90 schema:name readcube_id
93 schema:value 5ac3be69b810ae1f9a113ae5f57e1d30bbaa9b6a71f349994c39f3892221f883
94 rdf:type schema:PropertyValue
95 N66ded250b75f4115b72e0e381adbf294 rdf:first N9a82b8fec4394f07a050642ae8a843b5
96 rdf:rest N1f943d1b660e4016bf6cd59df74c8323
97 N91406271c7cc477abd646563e37b3f5a schema:affiliation https://www.grid.ac/institutes/grid.34429.38
98 schema:familyName O’Sullivan
99 schema:givenName Terri L.
100 rdf:type schema:Person
101 N9a82b8fec4394f07a050642ae8a843b5 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
102 schema:familyName Milwid
103 schema:givenName Rachael M.
104 rdf:type schema:Person
105 Na35b0b0d70804741b1ddb8383737d001 rdf:first Nf19cfb14ae404f86ab6384383f9ca775
106 rdf:rest Nca309d27f93a4906b017634571eff13d
107 Nab9a6a9aff964b8eb62df6347d9a9178 schema:name dimensions_id
108 schema:value pub.1112469566
109 rdf:type schema:PropertyValue
110 Nae0de79250424ff19c973d80f0c90cbd rdf:first Nb7b8ef84eeae47d4a8befd230a95768d
111 rdf:rest rdf:nil
112 Nb7b8ef84eeae47d4a8befd230a95768d schema:affiliation https://www.grid.ac/institutes/grid.34429.38
113 schema:familyName Greer
114 schema:givenName Amy L.
115 rdf:type schema:Person
116 Nbddd1786c2284578ab0aa661bdc632b4 schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 Nca309d27f93a4906b017634571eff13d rdf:first N0212b77ab264476ea4935dd8d05dfd68
119 rdf:rest Nae0de79250424ff19c973d80f0c90cbd
120 Nf19cfb14ae404f86ab6384383f9ca775 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
121 schema:familyName Poljak
122 schema:givenName Zvonimir
123 rdf:type schema:Person
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
128 schema:name Public Health and Health Services
129 rdf:type schema:DefinedTerm
130 sg:journal.1045337 schema:issn 2045-2322
131 schema:name Scientific Reports
132 rdf:type schema:Periodical
133 sg:pub.10.1038/scientificamerican0503-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056529360
134 https://doi.org/10.1038/scientificamerican0503-60
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/srep04472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036983280
137 https://doi.org/10.1038/srep04472
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1741-7015-9-87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016144881
140 https://doi.org/10.1186/1741-7015-9-87
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/s12879-014-0695-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007893314
143 https://doi.org/10.1186/s12879-014-0695-9
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/s12879-016-2003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038783212
146 https://doi.org/10.1186/s12879-016-2003-3
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/b978-0-7020-5246-0.00027-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083742427
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/b978-012088459-9/50007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042691378
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.epidem.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837163
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.epidem.2018.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103238072
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jmaa.2004.05.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026773313
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jmaa.2012.04.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031310690
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jtbi.2005.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051760108
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.prevetmed.2010.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001683744
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.prevetmed.2018.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110197663
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.tpb.2004.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039926591
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.tree.2006.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050583480
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0167-5877(00)00161-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036291641
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0169-5347(01)02144-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015131004
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0264-410x(03)00156-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004941488
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1017/s0950268802006829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053873597
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1017/s095026880500467x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053927674
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1053/j.ctep.2006.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053139704
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.1421551111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009533662
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/01652176.2002.9695127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036924565
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/10888705.2017.1360773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091248857
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1090/conm/410/07729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089201898
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1098/rsif.2005.0042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011887451
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1098/rsif.2005.0051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017726907
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1098/rsif.2006.0129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026074094
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1098/rsif.2007.1100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015848415
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1098/rsif.2009.0030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003827885
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1098/rspb.2004.2766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005507659
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1098/rstb.2014.0107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017501613
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physreve.64.066112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727682
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreve.66.016128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023034919
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/evj.12104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006460295
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/evj.12794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100775256
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1750-2659.2010.00176.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026281218
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1865-1682.2009.01073.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027907200
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/jvi.05319-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062713198
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1137/s0036139902413829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874854
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1214/16-aoas1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084620366
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pcbi.1000280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035058149
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pone.0023176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035430543
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.21100.32 schema:alternateName York University
227 schema:name Department of Mathematics and Statistics, York University, Toronto, ON, Canada
228 Department of Population Medicine, University of Guelph, Guelph, ON, Canada
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
231 schema:name Department of Population Medicine, University of Guelph, Guelph, ON, Canada
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...