Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves in a Multi-Layered Assembly View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Leora Dresselhaus-Cooper, Joshua E. Gorfain, Chris T. Key, Benjamin K. Ofori-Okai, Suzanne J. Ali, Dmitro J. Martynowych, Arianna Gleason, Steven Kooi, Keith A. Nelson

ABSTRACT

We demonstrate single-shot multi-frame imaging of quasi-2D cylindrically converging shock waves as they propagate through a multi-layer target sample assembly. We visualize the shock with sequences of up to 16 images, using a Fabry-Perot cavity to generate a pulse train that can be used in various imaging configurations. We employ multi-frame shadowgraph and dark-field imaging to measure the amplitude and phase of the light transmitted through the shocked target. Single-shot multi-frame imaging tracks geometric distortion and additional features in our images that were not previously resolvable in this experimental geometry. Analysis of our images, in combination with simulations, shows that the additional image features are formed by a coupled wave structure resulting from interface effects in our targets. This technique presents a new capability for tabletop imaging of shock waves that can be extended to experiments at large-scale facilities. More... »

PAGES

3689

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40037-3

DOI

http://dx.doi.org/10.1038/s41598-019-40037-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112570984

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30842469


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Lawrence Livermore National Laboratory, 7000 East Ave, L-487, 94550, Livermore, CA, USA", 
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
            "Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dresselhaus-Cooper", 
        "givenName": "Leora", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Dynamics (United States)", 
          "id": "https://www.grid.ac/institutes/grid.426778.8", 
          "name": [
            "Applied Physical Sciences, 4301 North Fairfax Dr., Suite 640, 22203, Arlington, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorfain", 
        "givenName": "Joshua E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Dynamics (United States)", 
          "id": "https://www.grid.ac/institutes/grid.426778.8", 
          "name": [
            "Applied Physical Sciences, 4301 North Fairfax Dr., Suite 640, 22203, Arlington, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Key", 
        "givenName": "Chris T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SLAC National Accelerator Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.445003.6", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
            "SLAC National Accelerator, 2575 Sand Hill Rd, 94025, Menlo Park, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ofori-Okai", 
        "givenName": "Benjamin K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, 7000 East Ave, L-487, 94550, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "Suzanne J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
            "Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martynowych", 
        "givenName": "Dmitro J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SLAC National Accelerator Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.445003.6", 
          "name": [
            "SLAC National Accelerator, 2575 Sand Hill Rd, 94025, Menlo Park, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gleason", 
        "givenName": "Arianna", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kooi", 
        "givenName": "Steven", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
            "Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nelson", 
        "givenName": "Keith A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4733704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001279060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004126526", 
          "https://doi.org/10.1038/nmat2400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004126526", 
          "https://doi.org/10.1038/nmat2400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4923437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009383630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900609", 
          "https://doi.org/10.1038/nphys3736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32535-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019379848", 
          "https://doi.org/10.1007/978-3-642-32535-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32535-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019379848", 
          "https://doi.org/10.1007/978-3-642-32535-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4918929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020211764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.1814767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025959487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211205700004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027360459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211205700004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027360459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211205700004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027360459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56640-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027722876", 
          "https://doi.org/10.1007/978-3-642-56640-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56640-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027722876", 
          "https://doi.org/10.1007/978-3-642-56640-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030028314", 
          "https://doi.org/10.1038/srep11089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1955.0223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031651827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.214503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035844624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.214503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035844624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160130207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039415177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(90)90071-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047405927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(90)90071-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047405927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.732605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049157507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0155-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051620813", 
          "https://doi.org/10.1007/978-1-4613-0155-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0155-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051620813", 
          "https://doi.org/10.1007/978-1-4613-0155-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786441208561138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052148829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1660986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057739178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1662536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057740871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1700067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.328102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057930693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.332884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057937349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4820927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058082331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4894854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058092294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.555743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058109615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0026-1394/2/2/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058977057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.49.523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.49.523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tps.2011.2109949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061766883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.30.002206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065174956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4998959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091754413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471213748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471213748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511613630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098787458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5031907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104357103"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We demonstrate single-shot multi-frame imaging of quasi-2D cylindrically converging shock waves as they propagate through a multi-layer target sample assembly. We visualize the shock with sequences of up to 16 images, using a Fabry-Perot cavity to generate a pulse train that can be used in various imaging configurations. We employ multi-frame shadowgraph and dark-field imaging to measure the amplitude and phase of the light transmitted through the shocked target. Single-shot multi-frame imaging tracks geometric distortion and additional features in our images that were not previously resolvable in this experimental geometry. Analysis of our images, in combination with simulations, shows that the additional image features are formed by a coupled wave structure resulting from interface effects in our targets. This technique presents a new capability for tabletop imaging of shock waves that can be extended to experiments at large-scale facilities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40037-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves in a Multi-Layered Assembly", 
    "pagination": "3689", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a209d3d6d89365e0ffa3928c8081214450fa75fd5e4ecb31454843602a00616"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30842469"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40037-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112570984"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40037-3", 
      "https://app.dimensions.ai/details/publication/pub.1112570984"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11704_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40037-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40037-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40037-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40037-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40037-3'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40037-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N511d073bc3134aa280775de238447ab6
4 schema:citation sg:pub.10.1007/978-1-4613-0155-4
5 sg:pub.10.1007/978-3-642-32535-9
6 sg:pub.10.1007/978-3-642-56640-0
7 sg:pub.10.1038/nmat2400
8 sg:pub.10.1038/nphys3736
9 sg:pub.10.1038/srep11089
10 https://doi.org/10.1002/0471213748
11 https://doi.org/10.1002/cpa.3160130207
12 https://doi.org/10.1016/0734-743x(90)90071-3
13 https://doi.org/10.1017/cbo9780511613630
14 https://doi.org/10.1017/s002211205700004x
15 https://doi.org/10.1063/1.1660986
16 https://doi.org/10.1063/1.1662536
17 https://doi.org/10.1063/1.1700067
18 https://doi.org/10.1063/1.328102
19 https://doi.org/10.1063/1.332884
20 https://doi.org/10.1063/1.4733704
21 https://doi.org/10.1063/1.4820927
22 https://doi.org/10.1063/1.4894854
23 https://doi.org/10.1063/1.4918929
24 https://doi.org/10.1063/1.4923437
25 https://doi.org/10.1063/1.4998959
26 https://doi.org/10.1063/1.5031907
27 https://doi.org/10.1063/1.555743
28 https://doi.org/10.1063/1.870688
29 https://doi.org/10.1080/14786441208561138
30 https://doi.org/10.1088/0026-1394/2/2/002
31 https://doi.org/10.1098/rspa.1955.0223
32 https://doi.org/10.1103/physrevlett.106.214503
33 https://doi.org/10.1103/revmodphys.49.523
34 https://doi.org/10.1109/tps.2011.2109949
35 https://doi.org/10.1117/1.1814767
36 https://doi.org/10.1117/12.732605
37 https://doi.org/10.1364/josab.30.002206
38 schema:datePublished 2019-12
39 schema:datePublishedReg 2019-12-01
40 schema:description We demonstrate single-shot multi-frame imaging of quasi-2D cylindrically converging shock waves as they propagate through a multi-layer target sample assembly. We visualize the shock with sequences of up to 16 images, using a Fabry-Perot cavity to generate a pulse train that can be used in various imaging configurations. We employ multi-frame shadowgraph and dark-field imaging to measure the amplitude and phase of the light transmitted through the shocked target. Single-shot multi-frame imaging tracks geometric distortion and additional features in our images that were not previously resolvable in this experimental geometry. Analysis of our images, in combination with simulations, shows that the additional image features are formed by a coupled wave structure resulting from interface effects in our targets. This technique presents a new capability for tabletop imaging of shock waves that can be extended to experiments at large-scale facilities.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N5e2547c71a014a51bbe935195f620400
45 Nee40aeed176c48249ab5878aa9ff35c0
46 sg:journal.1045337
47 schema:name Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves in a Multi-Layered Assembly
48 schema:pagination 3689
49 schema:productId N030721ca768645d1be50da6f01200ff2
50 N18ed32888fe543e589678d3b96da1cb7
51 N2098ce3fe95b4ecb89e23042a9026641
52 N94078abb047048afba7229f843f3d90e
53 N965705b4a8f7400a8718bb085979c771
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112570984
55 https://doi.org/10.1038/s41598-019-40037-3
56 schema:sdDatePublished 2019-04-11T11:18
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nb50ba2ddd4b44c18a6bc413cb4248925
59 schema:url https://www.nature.com/articles/s41598-019-40037-3
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N018890fb536048f8b3c1cc14460f18c1 rdf:first N7dd3009876f04ca1ad3c20084586554e
64 rdf:rest Nb9078eded9d34fc8a47d2b77d9bb7b7f
65 N030721ca768645d1be50da6f01200ff2 schema:name dimensions_id
66 schema:value pub.1112570984
67 rdf:type schema:PropertyValue
68 N0c7b2cbecff84a90aed252b482081375 rdf:first N45585f255e3f4d1bb22b2bd6eb766d56
69 rdf:rest N31593f59555843ddb437593cc3c050e3
70 N121f054ac765493ea75665ac48e1e525 schema:affiliation https://www.grid.ac/institutes/grid.426778.8
71 schema:familyName Gorfain
72 schema:givenName Joshua E.
73 rdf:type schema:Person
74 N18ed32888fe543e589678d3b96da1cb7 schema:name readcube_id
75 schema:value 3a209d3d6d89365e0ffa3928c8081214450fa75fd5e4ecb31454843602a00616
76 rdf:type schema:PropertyValue
77 N2098ce3fe95b4ecb89e23042a9026641 schema:name pubmed_id
78 schema:value 30842469
79 rdf:type schema:PropertyValue
80 N26b0e96636314347a413756f9804ef2c rdf:first Ndc329e8cb9c94c25961df9f9d3dc6ec0
81 rdf:rest N2a7fe2bf31c74e3aa5a9344dde2b8bbe
82 N2a7fe2bf31c74e3aa5a9344dde2b8bbe rdf:first N51bd4571b56342f49dc5e05f784f8627
83 rdf:rest rdf:nil
84 N31593f59555843ddb437593cc3c050e3 rdf:first Ned43a31d222c44348ec76a01f11e9d75
85 rdf:rest N26b0e96636314347a413756f9804ef2c
86 N435a089074f64f6c823dd149b23330b7 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
87 schema:familyName Ali
88 schema:givenName Suzanne J.
89 rdf:type schema:Person
90 N45585f255e3f4d1bb22b2bd6eb766d56 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
91 schema:familyName Martynowych
92 schema:givenName Dmitro J.
93 rdf:type schema:Person
94 N47fe3577df254a7a944ad6180b8bffd3 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
95 schema:familyName Dresselhaus-Cooper
96 schema:givenName Leora
97 rdf:type schema:Person
98 N511d073bc3134aa280775de238447ab6 rdf:first N47fe3577df254a7a944ad6180b8bffd3
99 rdf:rest Nd002ae4a92fc40829744868a2d940e61
100 N51bd4571b56342f49dc5e05f784f8627 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
101 schema:familyName Nelson
102 schema:givenName Keith A.
103 rdf:type schema:Person
104 N5e2547c71a014a51bbe935195f620400 schema:volumeNumber 9
105 rdf:type schema:PublicationVolume
106 N7dd3009876f04ca1ad3c20084586554e schema:affiliation https://www.grid.ac/institutes/grid.445003.6
107 schema:familyName Ofori-Okai
108 schema:givenName Benjamin K.
109 rdf:type schema:Person
110 N94078abb047048afba7229f843f3d90e schema:name nlm_unique_id
111 schema:value 101563288
112 rdf:type schema:PropertyValue
113 N965705b4a8f7400a8718bb085979c771 schema:name doi
114 schema:value 10.1038/s41598-019-40037-3
115 rdf:type schema:PropertyValue
116 Na5a0345fecb1475291608918b90b2dbd rdf:first Nd1e74ec9b7b948738c5ccc0483e57c2d
117 rdf:rest N018890fb536048f8b3c1cc14460f18c1
118 Nb50ba2ddd4b44c18a6bc413cb4248925 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nb9078eded9d34fc8a47d2b77d9bb7b7f rdf:first N435a089074f64f6c823dd149b23330b7
121 rdf:rest N0c7b2cbecff84a90aed252b482081375
122 Nd002ae4a92fc40829744868a2d940e61 rdf:first N121f054ac765493ea75665ac48e1e525
123 rdf:rest Na5a0345fecb1475291608918b90b2dbd
124 Nd1e74ec9b7b948738c5ccc0483e57c2d schema:affiliation https://www.grid.ac/institutes/grid.426778.8
125 schema:familyName Key
126 schema:givenName Chris T.
127 rdf:type schema:Person
128 Ndc329e8cb9c94c25961df9f9d3dc6ec0 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
129 schema:familyName Kooi
130 schema:givenName Steven
131 rdf:type schema:Person
132 Ned43a31d222c44348ec76a01f11e9d75 schema:affiliation https://www.grid.ac/institutes/grid.445003.6
133 schema:familyName Gleason
134 schema:givenName Arianna
135 rdf:type schema:Person
136 Nee40aeed176c48249ab5878aa9ff35c0 schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
139 schema:name Information and Computing Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
142 schema:name Artificial Intelligence and Image Processing
143 rdf:type schema:DefinedTerm
144 sg:journal.1045337 schema:issn 2045-2322
145 schema:name Scientific Reports
146 rdf:type schema:Periodical
147 sg:pub.10.1007/978-1-4613-0155-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051620813
148 https://doi.org/10.1007/978-1-4613-0155-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-642-32535-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019379848
151 https://doi.org/10.1007/978-3-642-32535-9
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-3-642-56640-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027722876
154 https://doi.org/10.1007/978-3-642-56640-0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nmat2400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004126526
157 https://doi.org/10.1038/nmat2400
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nphys3736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013900609
160 https://doi.org/10.1038/nphys3736
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/srep11089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030028314
163 https://doi.org/10.1038/srep11089
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/0471213748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661498
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/cpa.3160130207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039415177
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0734-743x(90)90071-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047405927
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1017/cbo9780511613630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787458
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1017/s002211205700004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027360459
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.1660986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057739178
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.1662536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057740871
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.1700067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770511
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.328102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057930693
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.332884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057937349
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.4733704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001279060
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.4820927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058082331
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.4894854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058092294
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.4918929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020211764
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.4923437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009383630
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.4998959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091754413
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.5031907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104357103
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1063/1.555743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058109615
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1063/1.870688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122815
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1080/14786441208561138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052148829
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1088/0026-1394/2/2/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058977057
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1098/rspa.1955.0223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031651827
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.106.214503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035844624
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/revmodphys.49.523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838860
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tps.2011.2109949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061766883
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1117/1.1814767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025959487
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1117/12.732605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049157507
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1364/josab.30.002206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065174956
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
222 schema:name Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
223 Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, 02139, Cambridge, MA, USA
224 Lawrence Livermore National Laboratory, 7000 East Ave, L-487, 94550, Livermore, CA, USA
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.250008.f schema:alternateName Lawrence Livermore National Laboratory
227 schema:name Lawrence Livermore National Laboratory, 7000 East Ave, L-487, 94550, Livermore, CA, USA
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.426778.8 schema:alternateName General Dynamics (United States)
230 schema:name Applied Physical Sciences, 4301 North Fairfax Dr., Suite 640, 22203, Arlington, VA, USA
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.445003.6 schema:alternateName SLAC National Accelerator Laboratory
233 schema:name Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
234 SLAC National Accelerator, 2575 Sand Hill Rd, 94025, Menlo Park, CA, USA
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...