Vacancy cluster in ZnO films grown by pulsed laser deposition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Zilan Wang, Caiqin Luo, W. Anwand, A. Wagner, M. Butterling, M. Azizar Rahman, Matthew R. Phillips, Cuong Ton-That, M. Younas, Shichen Su, Francis Chi-Chung Ling

ABSTRACT

Undoped and Ga-doped ZnO films were grown on c-sapphire using pulsed laser deposition (PLD) at the substrate temperature of 600 °C. Positron annihilation spectroscopy study (PAS) shows that the dominant VZn-related defect in the as-grown undoped ZnO grown with relative low oxygen pressure P(O2) is a vacancy cluster (most likely a VZn-nVO complex with n = 2, 3) rather than the isolated VZn which has a lower formation energy. Annealing these samples at 900 °C induces out-diffusion of Zn from the ZnO film into the sapphire creating the VZn at the film/sapphire interface, which favors the formation of vacancy cluster containing relatively more VZn. Increasing the P(O2) during growth also lead to the formation of the vacancy cluster with relatively more VZn. For Ga-doped ZnO films, the oxygen pressure during growth has significant influence on the electron concentration and the microstructure of the VZn-related defect. Green luminescence (GL) and yellow luminescence (YL) were identified in the cathodoluminescence study (CL) study, and both emission bands were quenched after hydrogen plasma treatment. The origin of the GL is discussed. More... »

PAGES

3534

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-40029-3

DOI

http://dx.doi.org/10.1038/s41598-019-40029-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544044

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30837565


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zilan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Caiqin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr., 400, 01328, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anwand", 
        "givenName": "W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr., 400, 01328, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr., 400, 01328, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butterling", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney", 
          "id": "https://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "School of Mathematical and Physical Sciences, University of Technology Sydney, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahman", 
        "givenName": "M. Azizar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney", 
          "id": "https://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "School of Mathematical and Physical Sciences, University of Technology Sydney, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phillips", 
        "givenName": "Matthew R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney", 
          "id": "https://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "School of Mathematical and Physical Sciences, University of Technology Sydney, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ton-That", 
        "givenName": "Cuong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Nuclear Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.420113.5", 
          "name": [
            "Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China", 
            "PGG, Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Younas", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.263785.d", 
          "name": [
            "Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China", 
            "Institute of Optoelectronic Material and Technology, South China Normal University, 510631, Guangzhou, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Shichen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ling", 
        "givenName": "Francis Chi-Chung", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0169-4332(94)00334-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007379962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4890460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021608401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200304271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036754297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1992666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039235325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1992666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039235325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4884653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040917833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2013.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041155828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sca.20000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048141533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2014.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049622700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1855412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057828476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2838326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057878039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3216464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057919717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3462394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057955854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4802753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058074740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/28/22/224002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059114093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.2.021001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.2.021001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.233201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.233201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.045208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.045208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.245206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.245206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.035125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.035125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.035331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.035331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.081201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.081201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.045206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.045206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.215501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.215501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.23.579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060772957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.23.579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060772957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.205502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.205502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.155504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.155504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.085502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.085502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.094105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084197869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.094105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084197869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4997510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092515620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109712136", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03893-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109712136", 
          "https://doi.org/10.1007/978-3-662-03893-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03893-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109712136", 
          "https://doi.org/10.1007/978-3-662-03893-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Undoped and Ga-doped ZnO films were grown on c-sapphire using pulsed laser deposition (PLD) at the substrate temperature of 600\u2009\u00b0C. Positron annihilation spectroscopy study (PAS) shows that the dominant VZn-related defect in the as-grown undoped ZnO grown with relative low oxygen pressure P(O2) is a vacancy cluster (most likely a VZn-nVO complex with n\u2009=\u20092, 3) rather than the isolated VZn which has a lower formation energy. Annealing these samples at 900\u2009\u00b0C induces out-diffusion of Zn from the ZnO film into the sapphire creating the VZn\u00a0at the film/sapphire interface, which favors the formation of vacancy cluster containing relatively more VZn. Increasing the P(O2) during growth also lead to the formation of the vacancy cluster with relatively more VZn. For Ga-doped ZnO films, the oxygen pressure during growth has significant influence on the electron concentration and the microstructure of the VZn-related defect. Green luminescence (GL) and yellow luminescence (YL) were identified in the cathodoluminescence study (CL) study, and both emission bands were quenched after hydrogen plasma treatment. The origin of the GL is discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-40029-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7430796", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Vacancy cluster in ZnO films grown by pulsed laser deposition", 
    "pagination": "3534", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f7f17f362ca8fb7957cf6991ba82ac1c770a913091b69963f92bf13c317fff5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30837565"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-40029-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-40029-3", 
      "https://app.dimensions.ai/details/publication/pub.1112544044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11701_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-40029-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40029-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40029-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40029-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-40029-3'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-40029-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3ff6d9011542430085654d62596168ae
4 schema:citation sg:pub.10.1007/978-3-662-03893-2
5 https://app.dimensions.ai/details/publication/pub.1109712136
6 https://doi.org/10.1002/pssb.200304271
7 https://doi.org/10.1002/sca.20000
8 https://doi.org/10.1016/0169-4332(94)00334-3
9 https://doi.org/10.1016/j.jcrysgro.2014.04.006
10 https://doi.org/10.1063/1.1855412
11 https://doi.org/10.1063/1.1992666
12 https://doi.org/10.1063/1.2838326
13 https://doi.org/10.1063/1.3216464
14 https://doi.org/10.1063/1.3462394
15 https://doi.org/10.1063/1.4802753
16 https://doi.org/10.1063/1.4884653
17 https://doi.org/10.1063/1.4890460
18 https://doi.org/10.1063/1.4997510
19 https://doi.org/10.1088/0953-8984/28/22/224002
20 https://doi.org/10.1103/physrevapplied.2.021001
21 https://doi.org/10.1103/physrevb.64.233201
22 https://doi.org/10.1103/physrevb.74.045208
23 https://doi.org/10.1103/physrevb.75.245206
24 https://doi.org/10.1103/physrevb.78.035125
25 https://doi.org/10.1103/physrevb.79.115212
26 https://doi.org/10.1103/physrevb.80.035331
27 https://doi.org/10.1103/physrevb.81.081201
28 https://doi.org/10.1103/physrevb.83.045206
29 https://doi.org/10.1103/physrevb.84.115202
30 https://doi.org/10.1103/physrevb.84.115203
31 https://doi.org/10.1103/physrevb.86.115205
32 https://doi.org/10.1103/physrevb.95.094105
33 https://doi.org/10.1103/physrevlett.105.207201
34 https://doi.org/10.1103/physrevlett.108.215501
35 https://doi.org/10.1103/physrevlett.23.579
36 https://doi.org/10.1103/physrevlett.85.1012
37 https://doi.org/10.1103/physrevlett.91.205502
38 https://doi.org/10.1103/physrevlett.92.155504
39 https://doi.org/10.1103/physrevlett.99.085502
40 https://doi.org/10.1103/revmodphys.85.1583
41 https://doi.org/10.1557/jmr.2013.195
42 schema:datePublished 2019-12
43 schema:datePublishedReg 2019-12-01
44 schema:description Undoped and Ga-doped ZnO films were grown on c-sapphire using pulsed laser deposition (PLD) at the substrate temperature of 600 °C. Positron annihilation spectroscopy study (PAS) shows that the dominant V<sub>Zn</sub>-related defect in the as-grown undoped ZnO grown with relative low oxygen pressure P(O<sub>2</sub>) is a vacancy cluster (most likely a V<sub>Zn</sub>-nV<sub>O</sub> complex with n = 2, 3) rather than the isolated V<sub>Zn</sub> which has a lower formation energy. Annealing these samples at 900 °C induces out-diffusion of Zn from the ZnO film into the sapphire creating the V<sub>Zn</sub> at the film/sapphire interface, which favors the formation of vacancy cluster containing relatively more V<sub>Zn</sub>. Increasing the P(O<sub>2</sub>) during growth also lead to the formation of the vacancy cluster with relatively more V<sub>Zn</sub>. For Ga-doped ZnO films, the oxygen pressure during growth has significant influence on the electron concentration and the microstructure of the V<sub>Zn</sub>-related defect. Green luminescence (GL) and yellow luminescence (YL) were identified in the cathodoluminescence study (CL) study, and both emission bands were quenched after hydrogen plasma treatment. The origin of the GL is discussed.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N148cede38cca4a5dae150d0828d52400
49 N2bf97e5eea7740c2a858831d45f0c422
50 sg:journal.1045337
51 schema:name Vacancy cluster in ZnO films grown by pulsed laser deposition
52 schema:pagination 3534
53 schema:productId N28f3a9e2b1b64b8e8334917541cd0089
54 N293770209291430f900fd515d24cd774
55 N4f02f24d4d9947fd90f5dc0c3af984fe
56 Nb6d2ce61d1b74950b73fc1bb3efe75c7
57 Nc1a3740ef933411f99e389e1437a67e9
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544044
59 https://doi.org/10.1038/s41598-019-40029-3
60 schema:sdDatePublished 2019-04-11T11:18
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N87689f9973144c1589ace89e9c4472dc
63 schema:url https://www.nature.com/articles/s41598-019-40029-3
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N07701ffc0b7243ea8c86d483f4098aff rdf:first Na2b207a4d6df434490580f45208d95e9
68 rdf:rest N4618ec446f46404cbd4ec6a69c6c7400
69 N148cede38cca4a5dae150d0828d52400 schema:volumeNumber 9
70 rdf:type schema:PublicationVolume
71 N14953bdba6ab4b8eb8315ebbb29a650b rdf:first Nc6c912989ca048609933e06daa2e7be4
72 rdf:rest N9435956cdbf148baa9f66ef0fed67334
73 N28f3a9e2b1b64b8e8334917541cd0089 schema:name nlm_unique_id
74 schema:value 101563288
75 rdf:type schema:PropertyValue
76 N293770209291430f900fd515d24cd774 schema:name doi
77 schema:value 10.1038/s41598-019-40029-3
78 rdf:type schema:PropertyValue
79 N2bf97e5eea7740c2a858831d45f0c422 schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N3b7a0f24b90d489381ec61bd155458f2 schema:affiliation https://www.grid.ac/institutes/grid.263785.d
82 schema:familyName Su
83 schema:givenName Shichen
84 rdf:type schema:Person
85 N3fb80d596a87441da5573660d0e419fd schema:affiliation https://www.grid.ac/institutes/grid.194645.b
86 schema:familyName Ling
87 schema:givenName Francis Chi-Chung
88 rdf:type schema:Person
89 N3ff6d9011542430085654d62596168ae rdf:first Nfce8af820ac84eeeb0f9b1d463181425
90 rdf:rest N07701ffc0b7243ea8c86d483f4098aff
91 N4618ec446f46404cbd4ec6a69c6c7400 rdf:first Nfcea535adb0f40f48d464cb9c70ffe8c
92 rdf:rest Nd87a30242af6409783732cf35fd314e9
93 N4f02f24d4d9947fd90f5dc0c3af984fe schema:name pubmed_id
94 schema:value 30837565
95 rdf:type schema:PropertyValue
96 N52e1b90caa554993b276c34d9796e63f schema:affiliation https://www.grid.ac/institutes/grid.117476.2
97 schema:familyName Ton-That
98 schema:givenName Cuong
99 rdf:type schema:Person
100 N65b6a82c219b44e187aff5e18d83cb72 rdf:first N3fb80d596a87441da5573660d0e419fd
101 rdf:rest rdf:nil
102 N7531d338ef944fa98a73e885bfcdbb7c schema:affiliation https://www.grid.ac/institutes/grid.40602.30
103 schema:familyName Wagner
104 schema:givenName A.
105 rdf:type schema:Person
106 N7b71551547c44eda920256259799969b schema:affiliation https://www.grid.ac/institutes/grid.117476.2
107 schema:familyName Phillips
108 schema:givenName Matthew R.
109 rdf:type schema:Person
110 N84ffc945b61e46b7bc285d9899722a56 rdf:first N52e1b90caa554993b276c34d9796e63f
111 rdf:rest N14953bdba6ab4b8eb8315ebbb29a650b
112 N87689f9973144c1589ace89e9c4472dc schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N930185e3ea4344d6986cb215c35e20e1 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
115 schema:familyName Rahman
116 schema:givenName M. Azizar
117 rdf:type schema:Person
118 N9435956cdbf148baa9f66ef0fed67334 rdf:first N3b7a0f24b90d489381ec61bd155458f2
119 rdf:rest N65b6a82c219b44e187aff5e18d83cb72
120 Na2b207a4d6df434490580f45208d95e9 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
121 schema:familyName Luo
122 schema:givenName Caiqin
123 rdf:type schema:Person
124 Nade9802894724c4fb6dc9b4f74d65fb9 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
125 schema:familyName Butterling
126 schema:givenName M.
127 rdf:type schema:Person
128 Nb6d2ce61d1b74950b73fc1bb3efe75c7 schema:name readcube_id
129 schema:value 9f7f17f362ca8fb7957cf6991ba82ac1c770a913091b69963f92bf13c317fff5
130 rdf:type schema:PropertyValue
131 Nc1a3740ef933411f99e389e1437a67e9 schema:name dimensions_id
132 schema:value pub.1112544044
133 rdf:type schema:PropertyValue
134 Nc6c912989ca048609933e06daa2e7be4 schema:affiliation https://www.grid.ac/institutes/grid.420113.5
135 schema:familyName Younas
136 schema:givenName M.
137 rdf:type schema:Person
138 Nd6af6097703d4f6caebdd1a60c549963 rdf:first N7b71551547c44eda920256259799969b
139 rdf:rest N84ffc945b61e46b7bc285d9899722a56
140 Nd87a30242af6409783732cf35fd314e9 rdf:first N7531d338ef944fa98a73e885bfcdbb7c
141 rdf:rest Ne7f3b6d198bc4328a8883f2720b6c52c
142 Ne6d100af919246a1af5fbadcf256c05a rdf:first N930185e3ea4344d6986cb215c35e20e1
143 rdf:rest Nd6af6097703d4f6caebdd1a60c549963
144 Ne7f3b6d198bc4328a8883f2720b6c52c rdf:first Nade9802894724c4fb6dc9b4f74d65fb9
145 rdf:rest Ne6d100af919246a1af5fbadcf256c05a
146 Nfce8af820ac84eeeb0f9b1d463181425 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
147 schema:familyName Wang
148 schema:givenName Zilan
149 rdf:type schema:Person
150 Nfcea535adb0f40f48d464cb9c70ffe8c schema:affiliation https://www.grid.ac/institutes/grid.40602.30
151 schema:familyName Anwand
152 schema:givenName W.
153 rdf:type schema:Person
154 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
155 schema:name Engineering
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
158 schema:name Materials Engineering
159 rdf:type schema:DefinedTerm
160 sg:grant.7430796 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-40029-3
161 rdf:type schema:MonetaryGrant
162 sg:journal.1045337 schema:issn 2045-2322
163 schema:name Scientific Reports
164 rdf:type schema:Periodical
165 sg:pub.10.1007/978-3-662-03893-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109712136
166 https://doi.org/10.1007/978-3-662-03893-2
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1109712136 schema:CreativeWork
169 https://doi.org/10.1002/pssb.200304271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036754297
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/sca.20000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048141533
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0169-4332(94)00334-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007379962
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jcrysgro.2014.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049622700
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.1855412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057828476
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.1992666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039235325
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.2838326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057878039
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.3216464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057919717
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.3462394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057955854
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.4802753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058074740
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.4884653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040917833
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.4890460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021608401
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.4997510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092515620
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/0953-8984/28/22/224002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059114093
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevapplied.2.021001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060517555
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.64.233201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060601527
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.74.045208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060618285
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.75.245206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060621465
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.78.035125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060625543
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.79.115212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627734
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.80.035331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060629743
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.81.081201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631754
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.83.045206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634765
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.84.115202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636824
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.84.115203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636825
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.86.115205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639938
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.95.094105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084197869
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.105.207201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757659
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.108.215501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759793
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.23.579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060772957
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.85.1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821617
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.91.205502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827508
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.92.155504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828206
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.99.085502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834491
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/revmodphys.85.1583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839753
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1557/jmr.2013.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041155828
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.117476.2 schema:alternateName University of Technology Sydney
242 schema:name School of Mathematical and Physical Sciences, University of Technology Sydney, 2007, Ultimo, NSW, Australia
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
245 schema:name Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.263785.d schema:alternateName South China Normal University
248 schema:name Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China
249 Institute of Optoelectronic Material and Technology, South China Normal University, 510631, Guangzhou, P. R. China
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.40602.30 schema:alternateName Helmholtz-Zentrum Dresden-Rossendorf
252 schema:name Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr., 400, 01328, Dresden, Germany
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.420113.5 schema:alternateName Pakistan Institute of Nuclear Science and Technology
255 schema:name Department of Physics, The University of Hong Kong, Pokfulam Road, P. R. China
256 PGG, Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...