On the resilience of magic number theory for conductance ratios of aromatic molecules View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Lara Ulčakar, Tomaž Rejec, Jure Kokalj, Sara Sangtarash, Hatef Sadeghi, Anton Ramšak, John H. Jefferson, Colin J. Lambert

ABSTRACT

If simple guidelines could be established for understanding how quantum interference (QI) can be exploited to control the flow of electricity through single molecules, then new functional molecules, which exploit room-temperature QI could be rapidly identified and subsequently screened. Recently it was demonstrated that conductance ratios of molecules with aromatic cores, with different connectivities to electrodes, can be predicted using a simple and easy-to-use "magic number theory." In contrast with counting rules and "curly-arrow" descriptions of destructive QI, magic number theory captures the many forms of constructive QI, which can occur in molecular cores. Here we address the question of how conductance ratios are affected by electron-electron interactions. We find that due to cancellations of opposing trends, when Coulomb interactions and screening due to electrodes are switched on, conductance ratios are rather resilient. Consequently, qualitative trends in conductance ratios of molecules with extended pi systems can be predicted using simple 'non-interacting' magic number tables, without the need for large-scale computations. On the other hand, for certain connectivities, deviations from non-interacting conductance ratios can be significant and therefore such connectivities are of interest for probing the interplay between Coulomb interactions, connectivity and QI in single-molecule electron transport. More... »

PAGES

3478

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39937-1

DOI

http://dx.doi.org/10.1038/s41598-019-39937-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544026

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30837553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jo\u017eef Stefan Institute", 
          "id": "https://www.grid.ac/institutes/grid.11375.31", 
          "name": [
            "Jo\u017eef Stefan Institute, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ul\u010dakar", 
        "givenName": "Lara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jo\u017eef Stefan Institute", 
          "id": "https://www.grid.ac/institutes/grid.11375.31", 
          "name": [
            "Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia", 
            "Jo\u017eef Stefan Institute, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rejec", 
        "givenName": "Toma\u017e", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jo\u017eef Stefan Institute", 
          "id": "https://www.grid.ac/institutes/grid.11375.31", 
          "name": [
            "Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia", 
            "Jo\u017eef Stefan Institute, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kokalj", 
        "givenName": "Jure", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Department of Physics, Lancaster University, LA1 4YB, Lancaster, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sangtarash", 
        "givenName": "Sara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Department of Physics, Lancaster University, LA1 4YB, Lancaster, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadeghi", 
        "givenName": "Hatef", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jo\u017eef Stefan Institute", 
          "id": "https://www.grid.ac/institutes/grid.11375.31", 
          "name": [
            "Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia", 
            "Jo\u017eef Stefan Institute, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ram\u0161ak", 
        "givenName": "Anton", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Department of Physics, Lancaster University, LA1 4YB, Lancaster, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jefferson", 
        "givenName": "John H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Department of Physics, Lancaster University, LA1 4YB, Lancaster, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambert", 
        "givenName": "Colin J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.3451265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002124042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009258991", 
          "https://doi.org/10.1038/nnano.2013.91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.245125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010687205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.245125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010687205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4972572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010921138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012061177", 
          "https://doi.org/10.1038/nnano.2012.37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012315440", 
          "https://doi.org/10.1038/nnano.2011.111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6nr01907b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013086519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/14/11/302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013140491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013195035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013195035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b04715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013302113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9534901375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013777233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.193306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.193306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4901722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016240855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021962943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021962943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00528281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022381063", 
          "https://doi.org/10.1007/bf00528281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00528281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022381063", 
          "https://doi.org/10.1007/bf00528281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn100490g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028968738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/9/093029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029146226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101688a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033166613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101688a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033166613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201207667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035292330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000187300243381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036936366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1418632112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038829395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039593110", 
          "https://doi.org/10.1038/ncomms7389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040357511", 
          "https://doi.org/10.1038/nnano.2013.26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786437008238472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042098214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2045815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044105779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044669147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044669147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cs00203b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048387299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b01828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050555314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051922005", 
          "https://doi.org/10.1038/nnano.2012.147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpclett.6b02494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055114881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm4029484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja107420a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055848445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja107420a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055848445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja211555x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055851697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.5b00335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055873730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.5b06558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055874352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1698929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.035412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.035412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.2446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.2446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3762/bjnano.2.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071378458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpclett.6b02989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079397122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b11951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085287095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201704488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092593420"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "If simple guidelines could be established for understanding how quantum interference (QI) can be exploited to control the flow of electricity through single molecules, then new functional molecules, which exploit room-temperature QI could be rapidly identified and subsequently screened. Recently it was demonstrated that conductance ratios of molecules with aromatic cores, with different connectivities to electrodes, can be predicted using a simple and easy-to-use \"magic number theory.\" In contrast with counting rules and \"curly-arrow\" descriptions of destructive QI, magic number theory captures the many forms of constructive QI, which can occur in molecular cores. Here we address the question of how conductance ratios are affected by electron-electron interactions. We find that due to cancellations of opposing trends, when Coulomb interactions and screening due to electrodes are switched on, conductance ratios are rather resilient. Consequently, qualitative trends in conductance ratios of molecules with extended pi systems can be predicted using simple 'non-interacting' magic number tables, without the need for large-scale computations. On the other hand, for certain connectivities, deviations from non-interacting conductance ratios can be significant and therefore such connectivities are of interest for probing the interplay between Coulomb interactions, connectivity and QI in single-molecule electron transport.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39937-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4850226", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7070043", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5498386", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "On the resilience of magic number theory for conductance ratios of aromatic molecules", 
    "pagination": "3478", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2aa9c2704a6064196980d178ea5389cd9c24888455b3a9ca0e33f1eb1bd53939"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30837553"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39937-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39937-1", 
      "https://app.dimensions.ai/details/publication/pub.1112544026"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11692_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39937-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39937-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39937-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39937-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39937-1'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39937-1 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ndcef3b187dbb4b1ab440df8b94465da7
4 schema:citation sg:pub.10.1007/bf00528281
5 sg:pub.10.1038/ncomms7389
6 sg:pub.10.1038/nnano.2011.111
7 sg:pub.10.1038/nnano.2012.147
8 sg:pub.10.1038/nnano.2012.37
9 sg:pub.10.1038/nnano.2013.26
10 sg:pub.10.1038/nnano.2013.91
11 https://doi.org/10.1002/anie.201207667
12 https://doi.org/10.1002/chem.201704488
13 https://doi.org/10.1021/acs.jpcc.6b01828
14 https://doi.org/10.1021/acs.jpcc.6b11951
15 https://doi.org/10.1021/acs.jpclett.6b02494
16 https://doi.org/10.1021/acs.jpclett.6b02989
17 https://doi.org/10.1021/acs.nanolett.5b04715
18 https://doi.org/10.1021/cm4029484
19 https://doi.org/10.1021/ja107420a
20 https://doi.org/10.1021/ja211555x
21 https://doi.org/10.1021/jacs.5b00335
22 https://doi.org/10.1021/jacs.5b06558
23 https://doi.org/10.1021/nl101688a
24 https://doi.org/10.1021/nl2045815
25 https://doi.org/10.1021/nn100490g
26 https://doi.org/10.1039/c4cs00203b
27 https://doi.org/10.1039/c6nr01907b
28 https://doi.org/10.1039/tf9534901375
29 https://doi.org/10.1063/1.1698929
30 https://doi.org/10.1063/1.3451265
31 https://doi.org/10.1063/1.4901722
32 https://doi.org/10.1063/1.4972572
33 https://doi.org/10.1073/pnas.1418632112
34 https://doi.org/10.1080/000187300243381
35 https://doi.org/10.1080/14786437008238472
36 https://doi.org/10.1088/0953-8984/14/11/302
37 https://doi.org/10.1088/1367-2630/16/9/093029
38 https://doi.org/10.1103/physrevb.66.035412
39 https://doi.org/10.1103/physrevb.74.193306
40 https://doi.org/10.1103/physrevb.79.245125
41 https://doi.org/10.1103/physrevb.84.115457
42 https://doi.org/10.1103/physrevb.90.125413
43 https://doi.org/10.1103/physrevlett.109.056801
44 https://doi.org/10.1103/physrevlett.57.1761
45 https://doi.org/10.1103/physrevlett.65.2446
46 https://doi.org/10.1103/physrevlett.66.1082
47 https://doi.org/10.3762/bjnano.2.95
48 schema:datePublished 2019-12
49 schema:datePublishedReg 2019-12-01
50 schema:description If simple guidelines could be established for understanding how quantum interference (QI) can be exploited to control the flow of electricity through single molecules, then new functional molecules, which exploit room-temperature QI could be rapidly identified and subsequently screened. Recently it was demonstrated that conductance ratios of molecules with aromatic cores, with different connectivities to electrodes, can be predicted using a simple and easy-to-use "magic number theory." In contrast with counting rules and "curly-arrow" descriptions of destructive QI, magic number theory captures the many forms of constructive QI, which can occur in molecular cores. Here we address the question of how conductance ratios are affected by electron-electron interactions. We find that due to cancellations of opposing trends, when Coulomb interactions and screening due to electrodes are switched on, conductance ratios are rather resilient. Consequently, qualitative trends in conductance ratios of molecules with extended pi systems can be predicted using simple 'non-interacting' magic number tables, without the need for large-scale computations. On the other hand, for certain connectivities, deviations from non-interacting conductance ratios can be significant and therefore such connectivities are of interest for probing the interplay between Coulomb interactions, connectivity and QI in single-molecule electron transport.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N7e6d73f219ff417dac2cfda0fd2fdef9
55 Nd34d5b3a14fd464689f6a9e15430a887
56 sg:journal.1045337
57 schema:name On the resilience of magic number theory for conductance ratios of aromatic molecules
58 schema:pagination 3478
59 schema:productId N02ab504a5b414639acca36f649eac3e9
60 N3246b6437c44478aab7b5cf3df782a3d
61 N3c38a03b57a3421a9319d469729a3f2a
62 Nd230d9687f3c4da49279a050af88d155
63 Neb3bbe442d5448f28b87ec3f8a83f9d1
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544026
65 https://doi.org/10.1038/s41598-019-39937-1
66 schema:sdDatePublished 2019-04-11T11:17
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Na188ce313a8f4eec9c8edaf6689353e8
69 schema:url https://www.nature.com/articles/s41598-019-39937-1
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N02ab504a5b414639acca36f649eac3e9 schema:name pubmed_id
74 schema:value 30837553
75 rdf:type schema:PropertyValue
76 N07fc2745496a44de8b29562850aaff31 rdf:first N1178d00bde4e44ee92ca9120fddf1fab
77 rdf:rest rdf:nil
78 N1178d00bde4e44ee92ca9120fddf1fab schema:affiliation https://www.grid.ac/institutes/grid.9835.7
79 schema:familyName Lambert
80 schema:givenName Colin J.
81 rdf:type schema:Person
82 N1af1c07578194416ad32759848a80fe0 schema:affiliation https://www.grid.ac/institutes/grid.9835.7
83 schema:familyName Jefferson
84 schema:givenName John H.
85 rdf:type schema:Person
86 N1d24afb77f634d879044d6fa1e78f850 rdf:first Nd61d6e17c70e4aacb94353f0ba244066
87 rdf:rest N814f317b7c2c4f0ebbd1e0fd4c8bf978
88 N3246b6437c44478aab7b5cf3df782a3d schema:name readcube_id
89 schema:value 2aa9c2704a6064196980d178ea5389cd9c24888455b3a9ca0e33f1eb1bd53939
90 rdf:type schema:PropertyValue
91 N35d482d7a5874767969936a775269564 rdf:first Ne70bddd630aa46cebdfd8c0e627d65e8
92 rdf:rest N54d6e6d99b984d7ab771f7d59cd54642
93 N3c38a03b57a3421a9319d469729a3f2a schema:name nlm_unique_id
94 schema:value 101563288
95 rdf:type schema:PropertyValue
96 N3f575a550daf4ecf973b33156e299934 schema:affiliation https://www.grid.ac/institutes/grid.11375.31
97 schema:familyName Kokalj
98 schema:givenName Jure
99 rdf:type schema:Person
100 N54d6e6d99b984d7ab771f7d59cd54642 rdf:first N3f575a550daf4ecf973b33156e299934
101 rdf:rest N1d24afb77f634d879044d6fa1e78f850
102 N60c2fa6f87e24890af46a0f9e7221792 rdf:first N933862a1b21146af9c1d5b5f3e80fdf2
103 rdf:rest Nc8205a58ed2148348e9fd3be6d54b51b
104 N7e6d73f219ff417dac2cfda0fd2fdef9 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N814f317b7c2c4f0ebbd1e0fd4c8bf978 rdf:first Ncfbe777b608640d490bc728054b01c6c
107 rdf:rest N60c2fa6f87e24890af46a0f9e7221792
108 N933862a1b21146af9c1d5b5f3e80fdf2 schema:affiliation https://www.grid.ac/institutes/grid.11375.31
109 schema:familyName Ramšak
110 schema:givenName Anton
111 rdf:type schema:Person
112 N9a4f19d9d4fc40349443ae6b6ee30c14 schema:affiliation https://www.grid.ac/institutes/grid.11375.31
113 schema:familyName Ulčakar
114 schema:givenName Lara
115 rdf:type schema:Person
116 Na188ce313a8f4eec9c8edaf6689353e8 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nc8205a58ed2148348e9fd3be6d54b51b rdf:first N1af1c07578194416ad32759848a80fe0
119 rdf:rest N07fc2745496a44de8b29562850aaff31
120 Ncfbe777b608640d490bc728054b01c6c schema:affiliation https://www.grid.ac/institutes/grid.9835.7
121 schema:familyName Sadeghi
122 schema:givenName Hatef
123 rdf:type schema:Person
124 Nd230d9687f3c4da49279a050af88d155 schema:name doi
125 schema:value 10.1038/s41598-019-39937-1
126 rdf:type schema:PropertyValue
127 Nd34d5b3a14fd464689f6a9e15430a887 schema:volumeNumber 9
128 rdf:type schema:PublicationVolume
129 Nd61d6e17c70e4aacb94353f0ba244066 schema:affiliation https://www.grid.ac/institutes/grid.9835.7
130 schema:familyName Sangtarash
131 schema:givenName Sara
132 rdf:type schema:Person
133 Ndcef3b187dbb4b1ab440df8b94465da7 rdf:first N9a4f19d9d4fc40349443ae6b6ee30c14
134 rdf:rest N35d482d7a5874767969936a775269564
135 Ne70bddd630aa46cebdfd8c0e627d65e8 schema:affiliation https://www.grid.ac/institutes/grid.11375.31
136 schema:familyName Rejec
137 schema:givenName Tomaž
138 rdf:type schema:Person
139 Neb3bbe442d5448f28b87ec3f8a83f9d1 schema:name dimensions_id
140 schema:value pub.1112544026
141 rdf:type schema:PropertyValue
142 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
143 schema:name Chemical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
146 schema:name Physical Chemistry (incl. Structural)
147 rdf:type schema:DefinedTerm
148 sg:grant.4850226 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39937-1
149 rdf:type schema:MonetaryGrant
150 sg:grant.5498386 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39937-1
151 rdf:type schema:MonetaryGrant
152 sg:grant.7070043 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39937-1
153 rdf:type schema:MonetaryGrant
154 sg:journal.1045337 schema:issn 2045-2322
155 schema:name Scientific Reports
156 rdf:type schema:Periodical
157 sg:pub.10.1007/bf00528281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022381063
158 https://doi.org/10.1007/bf00528281
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ncomms7389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039593110
161 https://doi.org/10.1038/ncomms7389
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nnano.2011.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012315440
164 https://doi.org/10.1038/nnano.2011.111
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nnano.2012.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051922005
167 https://doi.org/10.1038/nnano.2012.147
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nnano.2012.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012061177
170 https://doi.org/10.1038/nnano.2012.37
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nnano.2013.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040357511
173 https://doi.org/10.1038/nnano.2013.26
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nnano.2013.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009258991
176 https://doi.org/10.1038/nnano.2013.91
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/anie.201207667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035292330
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/chem.201704488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092593420
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/acs.jpcc.6b01828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050555314
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/acs.jpcc.6b11951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085287095
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/acs.jpclett.6b02494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055114881
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/acs.jpclett.6b02989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079397122
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/acs.nanolett.5b04715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013302113
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/cm4029484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415681
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/ja107420a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055848445
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/ja211555x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055851697
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/jacs.5b00335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055873730
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/jacs.5b06558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055874352
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/nl101688a schema:sameAs https://app.dimensions.ai/details/publication/pub.1033166613
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/nl2045815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044105779
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/nn100490g schema:sameAs https://app.dimensions.ai/details/publication/pub.1028968738
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1039/c4cs00203b schema:sameAs https://app.dimensions.ai/details/publication/pub.1048387299
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1039/c6nr01907b schema:sameAs https://app.dimensions.ai/details/publication/pub.1013086519
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1039/tf9534901375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013777233
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.1698929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769467
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1063/1.3451265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002124042
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.4901722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016240855
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1063/1.4972572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010921138
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1073/pnas.1418632112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038829395
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1080/000187300243381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036936366
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1080/14786437008238472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042098214
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1088/0953-8984/14/11/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013140491
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1088/1367-2630/16/9/093029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029146226
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevb.66.035412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603831
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevb.74.193306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014383280
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevb.79.245125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010687205
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevb.84.115457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021962943
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevb.90.125413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044669147
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.109.056801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013195035
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.57.1761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793895
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevlett.65.2446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801491
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevlett.66.1082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802049
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3762/bjnano.2.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071378458
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.11375.31 schema:alternateName Jožef Stefan Institute
253 schema:name Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
254 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
255 Jožef Stefan Institute, Ljubljana, Slovenia
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.9835.7 schema:alternateName Lancaster University
258 schema:name Department of Physics, Lancaster University, LA1 4YB, Lancaster, United Kingdom
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...