Promoter RNA sequencing (PRSeq) for the massive and quantitative promoter analysis in vitro View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Shoji Ohuchi, Thorsten Mascher, Beatrix Suess

ABSTRACT

Analysis of promoter strength and specificity is important for understanding and engineering gene regulation. Here, we report an in vitro promoter analysis method that can achieve both massiveness and quantitativeness. In this approach, a pool of single-stranded DNA with a partially randomized promoter sequence to be analyzed is chemically synthesized. Through enzymatic reactions, the randomized sequence will be copied to the downstream region, resulting in a template DNA pool that carries its own promoter information on its transcribed region. After in vitro transcription of the DNA pool with an RNA polymerase of interest, the sequences of the resulting transcripts will be analyzed. Since the promoter strength linearly correlates to the copy number of transcript, the strength of each promoter sequence can be evaluated. A model experiment of T7 promoter variants demonstrated the quantitativeness of the method, and the method was applied for the analysis of the promoter of cyanophage Syn5 RNA polymerase. This method provides a powerful approach for analyzing the complexity of promoter specificity and discrimination for highly abundant and often redundant alternative sigma factors such as the extracellular function (ECF) sigma factors. More... »

PAGES

3118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39892-x

DOI

http://dx.doi.org/10.1038/s41598-019-39892-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112439569

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30816266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Institute of Microbiology, Technische Universit\u00e4t Dresden, Zellescher Weg 20b, 01217, Dresden, Germany", 
            "Body Inc., Nagoya University Incubation Facility, Furo-cho 1, Chikusa-ku, 464-0814, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohuchi", 
        "givenName": "Shoji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Institute of Microbiology, Technische Universit\u00e4t Dresden, Zellescher Weg 20b, 01217, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mascher", 
        "givenName": "Thorsten", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Department of Biology, Technische Universit\u00e4t Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suess", 
        "givenName": "Beatrix", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.aad6881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2015.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011364662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1603271113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012490951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiosc.2012.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013694905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119004813.ch7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021321345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00904-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027998099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3197-2_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030762611", 
          "https://doi.org/10.1007/978-1-4939-3197-2_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0029604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032268195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2013.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034697297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035252778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00176-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035994380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036333083", 
          "https://doi.org/10.1038/19999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041481324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2009.06870.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045433138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047661951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m112.442350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048595696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049169691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fob.2012.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049616111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051861212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiosc.2012.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053305109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00205a037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055165195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1192001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000113786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077983699", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2017.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085724208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092104204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2018.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103478029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2018.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103478029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Analysis of promoter strength and specificity is important for understanding and engineering gene regulation. Here, we report an in vitro promoter analysis method that can achieve both massiveness and quantitativeness. In this approach, a pool of single-stranded DNA with a partially randomized promoter sequence to be analyzed is chemically synthesized. Through enzymatic reactions, the randomized sequence will be copied to the downstream region, resulting in a template DNA pool that carries its own promoter information on its transcribed region. After in vitro transcription of the DNA pool with an RNA polymerase of interest, the sequences of the resulting transcripts will be analyzed. Since the promoter strength linearly correlates to the copy number of transcript, the strength of each promoter sequence can be evaluated. A model experiment of T7 promoter variants demonstrated the quantitativeness of the method, and the method was applied for the analysis of the promoter of cyanophage Syn5 RNA polymerase. This method provides a powerful approach for analyzing the complexity of promoter specificity and discrimination for highly abundant and often redundant alternative sigma factors such as the extracellular function (ECF) sigma factors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39892-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Promoter RNA sequencing (PRSeq) for the massive and quantitative promoter analysis in vitro", 
    "pagination": "3118", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4584071fcc524da2b71c41ca999baddbc65a3a90d5ca036631da0b6534a5abf"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30816266"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39892-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112439569"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39892-x", 
      "https://app.dimensions.ai/details/publication/pub.1112439569"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60372_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39892-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39892-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39892-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39892-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39892-x'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39892-x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N1839535dd0d54a6096ff365d63ae1ac5
4 schema:citation sg:pub.10.1007/978-1-4939-3197-2_7
5 sg:pub.10.1038/19999
6 https://app.dimensions.ai/details/publication/pub.1077983699
7 https://doi.org/10.1002/9781119004813.ch7
8 https://doi.org/10.1006/jmbi.1993.1086
9 https://doi.org/10.1016/j.fob.2012.07.004
10 https://doi.org/10.1016/j.jbiosc.2012.02.017
11 https://doi.org/10.1016/j.jbiosc.2012.06.011
12 https://doi.org/10.1016/j.mib.2013.02.001
13 https://doi.org/10.1016/j.mib.2017.05.004
14 https://doi.org/10.1016/j.molcel.2015.10.029
15 https://doi.org/10.1016/j.molcel.2018.03.014
16 https://doi.org/10.1021/bi00205a037
17 https://doi.org/10.1073/pnas.1603271113
18 https://doi.org/10.1074/jbc.m112.442350
19 https://doi.org/10.1093/nar/gkq377
20 https://doi.org/10.1093/nar/gks940
21 https://doi.org/10.1093/nar/gkt1193
22 https://doi.org/10.1093/nar/gkv367
23 https://doi.org/10.1093/nar/gkx953
24 https://doi.org/10.1111/j.1365-2958.2009.06870.x
25 https://doi.org/10.1126/science.1192001
26 https://doi.org/10.1126/science.aad6881
27 https://doi.org/10.1128/jb.00176-15
28 https://doi.org/10.1128/jb.00904-07
29 https://doi.org/10.1371/journal.pone.0029604
30 https://doi.org/10.2144/000113786
31 schema:datePublished 2019-12
32 schema:datePublishedReg 2019-12-01
33 schema:description Analysis of promoter strength and specificity is important for understanding and engineering gene regulation. Here, we report an in vitro promoter analysis method that can achieve both massiveness and quantitativeness. In this approach, a pool of single-stranded DNA with a partially randomized promoter sequence to be analyzed is chemically synthesized. Through enzymatic reactions, the randomized sequence will be copied to the downstream region, resulting in a template DNA pool that carries its own promoter information on its transcribed region. After in vitro transcription of the DNA pool with an RNA polymerase of interest, the sequences of the resulting transcripts will be analyzed. Since the promoter strength linearly correlates to the copy number of transcript, the strength of each promoter sequence can be evaluated. A model experiment of T7 promoter variants demonstrated the quantitativeness of the method, and the method was applied for the analysis of the promoter of cyanophage Syn5 RNA polymerase. This method provides a powerful approach for analyzing the complexity of promoter specificity and discrimination for highly abundant and often redundant alternative sigma factors such as the extracellular function (ECF) sigma factors.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Nb3c76d2e60414ad3bd31f22a0ddf3b85
38 Nf33febda849944ee93046d54c331e4e9
39 sg:journal.1045337
40 schema:name Promoter RNA sequencing (PRSeq) for the massive and quantitative promoter analysis in vitro
41 schema:pagination 3118
42 schema:productId N2313b29bd10b4ff3b28f73d7462b2f1f
43 N90c3c6cbe2b94c81bd8ea950bc259b12
44 Nc641d54c99d1468fa6a1d02ed55e073e
45 Ncb3e031b51bd41f387a83f70c916f86f
46 Nf71ac4c3ff214b77b8b4a2505461a454
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112439569
48 https://doi.org/10.1038/s41598-019-39892-x
49 schema:sdDatePublished 2019-04-11T11:06
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N1edf78b5baac46c8a2cd8edd5964fff9
52 schema:url https://www.nature.com/articles/s41598-019-39892-x
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0bba77de59c946b799ce6b74ef56bd11 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
57 schema:familyName Ohuchi
58 schema:givenName Shoji
59 rdf:type schema:Person
60 N1839535dd0d54a6096ff365d63ae1ac5 rdf:first N0bba77de59c946b799ce6b74ef56bd11
61 rdf:rest N5c648bb128764975b2b0c9a25f5d15b9
62 N1edf78b5baac46c8a2cd8edd5964fff9 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N2313b29bd10b4ff3b28f73d7462b2f1f schema:name readcube_id
65 schema:value b4584071fcc524da2b71c41ca999baddbc65a3a90d5ca036631da0b6534a5abf
66 rdf:type schema:PropertyValue
67 N579e1a876d9748d2ad01c7e7ce57f413 rdf:first Nf9530d53225d427788d53ab84b33615c
68 rdf:rest rdf:nil
69 N5c648bb128764975b2b0c9a25f5d15b9 rdf:first Ncd454475d5f84f88b97cb1dd5b4c1e87
70 rdf:rest N579e1a876d9748d2ad01c7e7ce57f413
71 N90c3c6cbe2b94c81bd8ea950bc259b12 schema:name nlm_unique_id
72 schema:value 101563288
73 rdf:type schema:PropertyValue
74 Nb3c76d2e60414ad3bd31f22a0ddf3b85 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Nc641d54c99d1468fa6a1d02ed55e073e schema:name dimensions_id
77 schema:value pub.1112439569
78 rdf:type schema:PropertyValue
79 Ncb3e031b51bd41f387a83f70c916f86f schema:name pubmed_id
80 schema:value 30816266
81 rdf:type schema:PropertyValue
82 Ncd454475d5f84f88b97cb1dd5b4c1e87 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
83 schema:familyName Mascher
84 schema:givenName Thorsten
85 rdf:type schema:Person
86 Nf33febda849944ee93046d54c331e4e9 schema:volumeNumber 9
87 rdf:type schema:PublicationVolume
88 Nf71ac4c3ff214b77b8b4a2505461a454 schema:name doi
89 schema:value 10.1038/s41598-019-39892-x
90 rdf:type schema:PropertyValue
91 Nf9530d53225d427788d53ab84b33615c schema:affiliation https://www.grid.ac/institutes/grid.6546.1
92 schema:familyName Suess
93 schema:givenName Beatrix
94 rdf:type schema:Person
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
99 schema:name Genetics
100 rdf:type schema:DefinedTerm
101 sg:journal.1045337 schema:issn 2045-2322
102 schema:name Scientific Reports
103 rdf:type schema:Periodical
104 sg:pub.10.1007/978-1-4939-3197-2_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762611
105 https://doi.org/10.1007/978-1-4939-3197-2_7
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/19999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036333083
108 https://doi.org/10.1038/19999
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1077983699 schema:CreativeWork
111 https://doi.org/10.1002/9781119004813.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021321345
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/jmbi.1993.1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049169691
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.fob.2012.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049616111
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jbiosc.2012.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053305109
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jbiosc.2012.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013694905
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.mib.2013.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034697297
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.mib.2017.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085724208
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.molcel.2015.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011364662
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.molcel.2018.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103478029
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/bi00205a037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055165195
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1073/pnas.1603271113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012490951
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1074/jbc.m112.442350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048595696
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/nar/gkq377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041481324
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/nar/gks940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035252778
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/nar/gkt1193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051861212
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/nar/gkv367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047661951
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/nar/gkx953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092104204
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.1365-2958.2009.06870.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045433138
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.1192001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462549
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.aad6881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743024
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1128/jb.00176-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035994380
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1128/jb.00904-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027998099
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1371/journal.pone.0029604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032268195
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2144/000113786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096380
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
160 schema:name Body Inc., Nagoya University Incubation Facility, Furo-cho 1, Chikusa-ku, 464-0814, Nagoya, Japan
161 Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
164 schema:name Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
167 schema:name Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...