Quantification of hepatic steatosis in chronic liver disease using novel automated method of second harmonic generation and two-photon excited fluorescence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

George Boon-Bee Goh, Wei Qiang Leow, Shen Liang, Wei Keat Wan, Tony Kiat Hon Lim, Chee Kiat Tan, Pik Eu Chang

ABSTRACT

The presence of hepatic steatosis (HS) is an important histological feature in a variety of liver disease. It is critical to assess HS accurately, particularly where it plays an integral part in defining the disease. Conventional methods of quantifying HS remain semi-quantitative, with potential limitations in precision, accuracy and subjectivity. Second Harmonic Generation (SHG) microscopy is a novel technology using multiphoton imaging techniques with applicability in histological tissue assessment. Using an automated algorithm based on signature SHG parameters, we explored the utility and application of SHG for the diagnosis and quantification of HS. SHG microscopy analysis using GENESIS (HistoIndex, Singapore) was applied on 86 archived liver biopsy samples. Reliability was correlated with 3 liver histopathologists. Data analysis was performed using SPSS. There was minimal inter-observer variability between the 3 liver histopathologists, with an intraclass correlation of 0.92 (95% CI 0.89-0.95; p < 0.001). Good correlation was observed between the histopathologists and automated SHG microscopy assessment of HS with Pearson correlation of 0.93: p < 0.001. SHG microscopy provides a valuable tool for objective, more precise measure of HS using an automated approach. Our study reflects proof of concept evidence for potential future refinement to current conventional histological assessment. More... »

PAGES

2975

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39783-1

DOI

http://dx.doi.org/10.1038/s41598-019-39783-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112395616

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30814650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke NUS Graduate Medical School", 
          "id": "https://www.grid.ac/institutes/grid.428397.3", 
          "name": [
            "Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore", 
            "Duke-NUS Medical School, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goh", 
        "givenName": "George Boon-Bee", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.163555.1", 
          "name": [
            "Department of Pathology, Singapore General Hospital, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leow", 
        "givenName": "Wei Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Shen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.163555.1", 
          "name": [
            "Department of Pathology, Singapore General Hospital, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wan", 
        "givenName": "Wei Keat", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke NUS Graduate Medical School", 
          "id": "https://www.grid.ac/institutes/grid.428397.3", 
          "name": [
            "Department of Pathology, Singapore General Hospital, Singapore, Singapore", 
            "Duke-NUS Medical School, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Tony Kiat Hon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke NUS Graduate Medical School", 
          "id": "https://www.grid.ac/institutes/grid.428397.3", 
          "name": [
            "Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore", 
            "Duke-NUS Medical School, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Chee Kiat", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke NUS Graduate Medical School", 
          "id": "https://www.grid.ac/institutes/grid.428397.3", 
          "name": [
            "Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore", 
            "Duke-NUS Medical School, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Pik Eu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10620-016-4095-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000101685", 
          "https://doi.org/10.1007/s10620-016-4095-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.28431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006499874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1530-0277.1988.tb00155.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008726804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1530-0277.1988.tb00155.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008726804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/liv.12162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012533362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014292027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2003.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015014967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.1999.01377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015032643", 
          "https://doi.org/10.1111/j.1572-0241.1999.01377.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.7194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019589411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.7194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019589411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.3183811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023362617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.3183811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023362617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prp.2013.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023839176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1478-3231.2008.01874.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023870803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1478-3231.2008.01874.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023870803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.3800370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024566612", 
          "https://doi.org/10.1038/modpathol.3800370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.3800370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024566612", 
          "https://doi.org/10.1038/modpathol.3800370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025955063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025955063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025955063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbalip.2014.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026759521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2014.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035278593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181bcd6dd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035284196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181bcd6dd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035284196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181bcd6dd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035284196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2016-312431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035770773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.28785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041529267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2006.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046748629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2012.04193.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046781351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.3041159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053320764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1756283x11430859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064076453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1756283x11430859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064076453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.29090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074249859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083285025", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21037/atm.2016.12.04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083986377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8278(17)30595-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085396944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-22082-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101130703", 
          "https://doi.org/10.1038/s41598-018-22082-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-22082-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101130703", 
          "https://doi.org/10.1038/s41598-018-22082-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The presence of hepatic steatosis (HS) is an important histological feature in a variety of liver disease. It is critical to assess HS accurately, particularly where it plays an integral part in defining the disease. Conventional methods of quantifying HS remain semi-quantitative, with potential limitations in precision, accuracy and subjectivity. Second Harmonic Generation (SHG) microscopy is a novel technology using multiphoton imaging techniques with applicability in histological tissue assessment. Using an automated algorithm based on signature SHG parameters, we explored the utility and application of SHG for the diagnosis and quantification of HS. SHG microscopy analysis using GENESIS (HistoIndex, Singapore) was applied on 86 archived liver biopsy samples. Reliability was correlated with 3 liver histopathologists. Data analysis was performed using SPSS. There was minimal inter-observer variability between the 3 liver histopathologists, with an intraclass correlation of 0.92 (95% CI 0.89-0.95; p\u2009<\u20090.001). Good correlation was observed between the histopathologists and automated SHG microscopy assessment of HS with Pearson correlation of 0.93: p\u2009<\u20090.001. SHG microscopy provides a valuable tool for objective, more precise measure of HS using an automated approach. Our study reflects proof of concept evidence for potential future refinement to current conventional histological assessment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39783-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Quantification of hepatic steatosis in chronic liver disease using novel automated method of second harmonic generation and two-photon excited fluorescence", 
    "pagination": "2975", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba1595e8171f903c4d451d2a2cde8dbc5f0119e283567f421662ca2e77887c8b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30814650"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39783-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112395616"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39783-1", 
      "https://app.dimensions.ai/details/publication/pub.1112395616"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77581_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39783-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39783-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39783-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39783-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39783-1'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39783-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbacc467c6b8c465f90175558101a65db
4 schema:citation sg:pub.10.1007/s10620-016-4095-4
5 sg:pub.10.1038/modpathol.3800370
6 sg:pub.10.1038/s41598-018-22082-6
7 sg:pub.10.1111/j.1572-0241.1999.01377.x
8 https://app.dimensions.ai/details/publication/pub.1083285025
9 https://doi.org/10.1002/bjs.7194
10 https://doi.org/10.1002/hep.28431
11 https://doi.org/10.1002/hep.28785
12 https://doi.org/10.1002/hep.29090
13 https://doi.org/10.1016/j.bbalip.2014.02.003
14 https://doi.org/10.1016/j.humpath.2003.10.029
15 https://doi.org/10.1016/j.jhep.2006.07.017
16 https://doi.org/10.1016/j.jhep.2009.12.009
17 https://doi.org/10.1016/j.jhep.2014.02.015
18 https://doi.org/10.1016/j.prp.2013.04.001
19 https://doi.org/10.1016/s0168-8278(17)30595-0
20 https://doi.org/10.1097/sla.0b013e3181bcd6dd
21 https://doi.org/10.1109/tsmc.1979.4310076
22 https://doi.org/10.1111/j.1365-2559.2012.04193.x
23 https://doi.org/10.1111/j.1478-3231.2008.01874.x
24 https://doi.org/10.1111/j.1530-0277.1988.tb00155.x
25 https://doi.org/10.1111/liv.12162
26 https://doi.org/10.1117/1.3041159
27 https://doi.org/10.1117/1.3183811
28 https://doi.org/10.1136/gutjnl-2016-312431
29 https://doi.org/10.1177/1756283x11430859
30 https://doi.org/10.1371/journal.pone.0147804
31 https://doi.org/10.21037/atm.2016.12.04
32 schema:datePublished 2019-12
33 schema:datePublishedReg 2019-12-01
34 schema:description The presence of hepatic steatosis (HS) is an important histological feature in a variety of liver disease. It is critical to assess HS accurately, particularly where it plays an integral part in defining the disease. Conventional methods of quantifying HS remain semi-quantitative, with potential limitations in precision, accuracy and subjectivity. Second Harmonic Generation (SHG) microscopy is a novel technology using multiphoton imaging techniques with applicability in histological tissue assessment. Using an automated algorithm based on signature SHG parameters, we explored the utility and application of SHG for the diagnosis and quantification of HS. SHG microscopy analysis using GENESIS (HistoIndex, Singapore) was applied on 86 archived liver biopsy samples. Reliability was correlated with 3 liver histopathologists. Data analysis was performed using SPSS. There was minimal inter-observer variability between the 3 liver histopathologists, with an intraclass correlation of 0.92 (95% CI 0.89-0.95; p < 0.001). Good correlation was observed between the histopathologists and automated SHG microscopy assessment of HS with Pearson correlation of 0.93: p < 0.001. SHG microscopy provides a valuable tool for objective, more precise measure of HS using an automated approach. Our study reflects proof of concept evidence for potential future refinement to current conventional histological assessment.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N09ca6896bef545478238885c26a8d7ee
39 N8aa9e80009fd4501b2cf022d1d583bf6
40 sg:journal.1045337
41 schema:name Quantification of hepatic steatosis in chronic liver disease using novel automated method of second harmonic generation and two-photon excited fluorescence
42 schema:pagination 2975
43 schema:productId N089387364cbd4c30be4068ab79d04f3d
44 N426772b67d4949149dc3713f31b235ff
45 N619ecfe5e3ab4d9e8c0b208b7a470fb6
46 N667bdd8908ec4c1eaf0aa4c84240c003
47 Nc28907536d9a4bd8aab8850ebac37636
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112395616
49 https://doi.org/10.1038/s41598-019-39783-1
50 schema:sdDatePublished 2019-04-11T10:50
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc79d061c8bed431ca5b82fdd14062878
53 schema:url https://www.nature.com/articles/s41598-019-39783-1
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N089387364cbd4c30be4068ab79d04f3d schema:name dimensions_id
58 schema:value pub.1112395616
59 rdf:type schema:PropertyValue
60 N09ca6896bef545478238885c26a8d7ee schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N0a3a9c60a188464e9317f62c664b28cf rdf:first N4d56c53be5b34c878c2cc8412ed90d37
63 rdf:rest rdf:nil
64 N0b6a88b68897494faf664008e175006d schema:affiliation https://www.grid.ac/institutes/grid.428397.3
65 schema:familyName Tan
66 schema:givenName Chee Kiat
67 rdf:type schema:Person
68 N426772b67d4949149dc3713f31b235ff schema:name pubmed_id
69 schema:value 30814650
70 rdf:type schema:PropertyValue
71 N4d56c53be5b34c878c2cc8412ed90d37 schema:affiliation https://www.grid.ac/institutes/grid.428397.3
72 schema:familyName Chang
73 schema:givenName Pik Eu
74 rdf:type schema:Person
75 N619ecfe5e3ab4d9e8c0b208b7a470fb6 schema:name doi
76 schema:value 10.1038/s41598-019-39783-1
77 rdf:type schema:PropertyValue
78 N62254be9a3ee4959a9df90ca26114726 schema:affiliation https://www.grid.ac/institutes/grid.428397.3
79 schema:familyName Lim
80 schema:givenName Tony Kiat Hon
81 rdf:type schema:Person
82 N667bdd8908ec4c1eaf0aa4c84240c003 schema:name nlm_unique_id
83 schema:value 101563288
84 rdf:type schema:PropertyValue
85 N6854349a47b44d689000e35c6d363ede rdf:first Na95739d439984955b5da4321adbbc9d3
86 rdf:rest Ncf8a70028dc4431ba71f33035932eaa8
87 N69ef501f47b447d3803a728c258a6267 schema:affiliation https://www.grid.ac/institutes/grid.428397.3
88 schema:familyName Goh
89 schema:givenName George Boon-Bee
90 rdf:type schema:Person
91 N6ed8eb1b9dac45aabafcdc42feb994f3 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
92 schema:familyName Liang
93 schema:givenName Shen
94 rdf:type schema:Person
95 N766a3e2c98a34d6dbfdd3a1b0b0dfcfa rdf:first N62254be9a3ee4959a9df90ca26114726
96 rdf:rest N94448b45186e482fbd392fc30e895737
97 N8aa9e80009fd4501b2cf022d1d583bf6 schema:volumeNumber 9
98 rdf:type schema:PublicationVolume
99 N94448b45186e482fbd392fc30e895737 rdf:first N0b6a88b68897494faf664008e175006d
100 rdf:rest N0a3a9c60a188464e9317f62c664b28cf
101 Na95739d439984955b5da4321adbbc9d3 schema:affiliation https://www.grid.ac/institutes/grid.163555.1
102 schema:familyName Leow
103 schema:givenName Wei Qiang
104 rdf:type schema:Person
105 Nbacc467c6b8c465f90175558101a65db rdf:first N69ef501f47b447d3803a728c258a6267
106 rdf:rest N6854349a47b44d689000e35c6d363ede
107 Nbda399fd33914e14894e49e869a36b48 schema:affiliation https://www.grid.ac/institutes/grid.163555.1
108 schema:familyName Wan
109 schema:givenName Wei Keat
110 rdf:type schema:Person
111 Nc28907536d9a4bd8aab8850ebac37636 schema:name readcube_id
112 schema:value ba1595e8171f903c4d451d2a2cde8dbc5f0119e283567f421662ca2e77887c8b
113 rdf:type schema:PropertyValue
114 Nc79d061c8bed431ca5b82fdd14062878 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Ncf8a70028dc4431ba71f33035932eaa8 rdf:first N6ed8eb1b9dac45aabafcdc42feb994f3
117 rdf:rest Nd59e38236d1746a88a296abb2268a69a
118 Nd59e38236d1746a88a296abb2268a69a rdf:first Nbda399fd33914e14894e49e869a36b48
119 rdf:rest N766a3e2c98a34d6dbfdd3a1b0b0dfcfa
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
124 schema:name Artificial Intelligence and Image Processing
125 rdf:type schema:DefinedTerm
126 sg:journal.1045337 schema:issn 2045-2322
127 schema:name Scientific Reports
128 rdf:type schema:Periodical
129 sg:pub.10.1007/s10620-016-4095-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000101685
130 https://doi.org/10.1007/s10620-016-4095-4
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/modpathol.3800370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024566612
133 https://doi.org/10.1038/modpathol.3800370
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/s41598-018-22082-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101130703
136 https://doi.org/10.1038/s41598-018-22082-6
137 rdf:type schema:CreativeWork
138 sg:pub.10.1111/j.1572-0241.1999.01377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015032643
139 https://doi.org/10.1111/j.1572-0241.1999.01377.x
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1083285025 schema:CreativeWork
142 https://doi.org/10.1002/bjs.7194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019589411
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/hep.28431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006499874
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/hep.28785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041529267
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/hep.29090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074249859
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.bbalip.2014.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026759521
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.humpath.2003.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015014967
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jhep.2006.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046748629
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jhep.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014292027
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jhep.2014.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035278593
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.prp.2013.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023839176
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0168-8278(17)30595-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085396944
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1097/sla.0b013e3181bcd6dd schema:sameAs https://app.dimensions.ai/details/publication/pub.1035284196
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/j.1365-2559.2012.04193.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046781351
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.1478-3231.2008.01874.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023870803
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/j.1530-0277.1988.tb00155.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008726804
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1111/liv.12162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012533362
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1117/1.3041159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053320764
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1117/1.3183811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023362617
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1136/gutjnl-2016-312431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035770773
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1177/1756283x11430859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064076453
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1371/journal.pone.0147804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025955063
185 rdf:type schema:CreativeWork
186 https://doi.org/10.21037/atm.2016.12.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083986377
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.163555.1 schema:alternateName Singapore General Hospital
189 schema:name Department of Pathology, Singapore General Hospital, Singapore, Singapore
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
192 schema:name Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.428397.3 schema:alternateName Duke NUS Graduate Medical School
195 schema:name Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
196 Department of Pathology, Singapore General Hospital, Singapore, Singapore
197 Duke-NUS Medical School, Singapore, Singapore
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...