Dynamic Concatenation of Quantum Error Correction in Integrated Quantum Computing Architecture View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ilkwon Sohn, Jeongho Bang, Jun Heo

ABSTRACT

Resource overhead problem caused by concatenation in quantum error correction (QEC) is of significant importance for the realization of fault-tolerant quantum computation (FTQC). To attack this problem, we propose a novel scheme by considering integrated FTQC architecture where the concatenation level is controlled dynamically; i.e., less (or more) concatenation levels are imposed by good (or poor) performance gates-we call this scheme "dynamic concatenation" in this sense. Such a dynamic concatenation is realizable in an integrated structure of FTQC, as the information of the concatenation can be communicated between classical system elements (e.g., compiler and system organizer) and the logical qubits in real-time. We derive the effective lower and upper bounds of the length of gate decomposition in order to achieve the practical advantage, namely of reduction of the overall operation time. By considering two non-trivial examples, it is shown that the aforementioned advantage can indeed be achieved in the presented scheme. Our result also provides an important scientific message, i.e., the interplay between "classical" and "quantum" can be helpful in QEC. More... »

PAGES

3302

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39439-0

DOI

http://dx.doi.org/10.1038/s41598-019-39439-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112471428

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30824753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute of Science & Technology Information", 
          "id": "https://www.grid.ac/institutes/grid.249964.4", 
          "name": [
            "School of Electrical Engineering, Korea University, Seoul, Korea", 
            "Advanced KREONET Center, Korea Institute of Science and Technology Information, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Ilkwon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.249961.1", 
          "name": [
            "School of Computational Sciences, Korea Institute for Advanced Study, 02455, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Jeongho", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "School of Electrical Engineering, Korea University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heo", 
        "givenName": "Jun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.113.080501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001475100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.080501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001475100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.052336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009118054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.052336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009118054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.2.031007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009428881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.2.031007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009428881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015199953", 
          "https://doi.org/10.1038/nature18648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.parco.2014.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017181410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017772418", 
          "https://doi.org/10.1038/srep07501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjqi.2015.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620095", 
          "https://doi.org/10.1038/npjqi.2015.4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1998.0166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025826813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027772386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027772386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1116955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028447014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032975547", 
          "https://doi.org/10.1038/nature03350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032975547", 
          "https://doi.org/10.1038/nature03350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.022317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033769866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.89.022317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033769866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.052329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038330480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.052329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038330480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.022316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042360261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.022316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042360261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043744108", 
          "https://doi.org/10.1038/srep19578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2494568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051763195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052324251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052324251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.r2493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.r2493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.032311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.032311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.010501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.010501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.060504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.060504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.976922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2006.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061387738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcad.2005.855930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061537326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2200/s00066ed1v01y200610cac001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069287952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.49-0323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073448194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.022313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083780819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.022313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083780819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-016-0003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083821376", 
          "https://doi.org/10.1038/s41534-016-0003-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2058-9565/aa7c4a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091034580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.96.032337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092017093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.96.032337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092017093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22331/q-2017-10-03-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092082107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2058-9565/aaa5cc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100250348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.050504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100757535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.050504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100757535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22331/q-2018-02-08-53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100935570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-23764-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101853037", 
          "https://doi.org/10.1038/s41598-018-23764-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-23764-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101853037", 
          "https://doi.org/10.1038/s41598-018-23764-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22331/q-2018-06-07-71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104455364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-018-0085-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106837336", 
          "https://doi.org/10.1038/s41534-018-0085-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Resource overhead problem caused by concatenation in quantum error correction (QEC) is of significant importance for the realization of fault-tolerant quantum computation (FTQC). To attack this problem, we propose a novel scheme by considering integrated FTQC architecture where the concatenation level is controlled dynamically; i.e., less (or more) concatenation levels are imposed by good (or poor) performance gates-we call this scheme \"dynamic concatenation\" in this sense. Such a dynamic concatenation is realizable in an integrated structure of FTQC, as the information of the concatenation can be communicated between classical system elements (e.g., compiler and system organizer) and the logical qubits in real-time. We derive the effective lower and upper bounds of the length of gate decomposition in order to achieve the practical advantage, namely of reduction of the overall operation time. By considering two non-trivial examples, it is shown that the aforementioned advantage can indeed be achieved in the presented scheme. Our result also provides an important scientific message, i.e., the interplay between \"classical\" and \"quantum\" can be helpful in QEC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39439-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7495755", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Dynamic Concatenation of Quantum Error Correction in Integrated Quantum Computing Architecture", 
    "pagination": "3302", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a08fcefdd1d0228d350ce7aff68855ceb594443da559bb00d3fcd32d1554336"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30824753"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39439-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112471428"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39439-0", 
      "https://app.dimensions.ai/details/publication/pub.1112471428"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11704_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39439-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39439-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39439-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39439-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39439-0'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39439-0 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N5d5888ebb7664815921e54898321751d
4 schema:citation sg:pub.10.1038/nature03350
5 sg:pub.10.1038/nature18648
6 sg:pub.10.1038/npjqi.2015.4
7 sg:pub.10.1038/s41534-016-0003-1
8 sg:pub.10.1038/s41534-018-0085-z
9 sg:pub.10.1038/s41598-018-23764-x
10 sg:pub.10.1038/srep07501
11 sg:pub.10.1038/srep19578
12 https://doi.org/10.1016/j.parco.2014.12.001
13 https://doi.org/10.1088/2058-9565/aa7c4a
14 https://doi.org/10.1088/2058-9565/aaa5cc
15 https://doi.org/10.1098/rspa.1998.0166
16 https://doi.org/10.1103/physreva.52.r2493
17 https://doi.org/10.1103/physreva.71.022316
18 https://doi.org/10.1103/physreva.86.052329
19 https://doi.org/10.1103/physreva.86.052336
20 https://doi.org/10.1103/physreva.89.022317
21 https://doi.org/10.1103/physreva.94.032311
22 https://doi.org/10.1103/physreva.95.022313
23 https://doi.org/10.1103/physreva.96.032337
24 https://doi.org/10.1103/physrevlett.113.080501
25 https://doi.org/10.1103/physrevlett.113.220501
26 https://doi.org/10.1103/physrevlett.117.010501
27 https://doi.org/10.1103/physrevlett.117.060504
28 https://doi.org/10.1103/physrevlett.120.050504
29 https://doi.org/10.1103/physrevlett.74.4083
30 https://doi.org/10.1103/physrevlett.77.793
31 https://doi.org/10.1103/physrevx.2.031007
32 https://doi.org/10.1103/revmodphys.87.307
33 https://doi.org/10.1109/2.976922
34 https://doi.org/10.1109/mc.2006.4
35 https://doi.org/10.1109/tcad.2005.855930
36 https://doi.org/10.1126/science.1116955
37 https://doi.org/10.1145/2494568
38 https://doi.org/10.2200/s00066ed1v01y200610cac001
39 https://doi.org/10.22331/q-2017-10-03-31
40 https://doi.org/10.22331/q-2018-02-08-53
41 https://doi.org/10.22331/q-2018-06-07-71
42 https://doi.org/10.5860/choice.49-0323
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description Resource overhead problem caused by concatenation in quantum error correction (QEC) is of significant importance for the realization of fault-tolerant quantum computation (FTQC). To attack this problem, we propose a novel scheme by considering integrated FTQC architecture where the concatenation level is controlled dynamically; i.e., less (or more) concatenation levels are imposed by good (or poor) performance gates-we call this scheme "dynamic concatenation" in this sense. Such a dynamic concatenation is realizable in an integrated structure of FTQC, as the information of the concatenation can be communicated between classical system elements (e.g., compiler and system organizer) and the logical qubits in real-time. We derive the effective lower and upper bounds of the length of gate decomposition in order to achieve the practical advantage, namely of reduction of the overall operation time. By considering two non-trivial examples, it is shown that the aforementioned advantage can indeed be achieved in the presented scheme. Our result also provides an important scientific message, i.e., the interplay between "classical" and "quantum" can be helpful in QEC.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N406176acc01f47b68bf51a8d32a597f7
50 N431ef8fd60bd454ea2fb7021c0b03a9c
51 sg:journal.1045337
52 schema:name Dynamic Concatenation of Quantum Error Correction in Integrated Quantum Computing Architecture
53 schema:pagination 3302
54 schema:productId N2609bff3bc7b4a1ea099c4d9c8254c76
55 N4cc8d0ffc49745b89f7ad4304a5d4234
56 N4cfc03db6c6c4752ae54ff6300d031f5
57 N692e96d5fc08409296c399c7918d5926
58 N856b59d539c443c3bd541a82b2cfe8a6
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112471428
60 https://doi.org/10.1038/s41598-019-39439-0
61 schema:sdDatePublished 2019-04-11T11:18
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N03087584a006449c9b2decb6c7fbeb43
64 schema:url https://www.nature.com/articles/s41598-019-39439-0
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N03087584a006449c9b2decb6c7fbeb43 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N2609bff3bc7b4a1ea099c4d9c8254c76 schema:name nlm_unique_id
71 schema:value 101563288
72 rdf:type schema:PropertyValue
73 N31cf252a5cb84e94a477abbc8bc30b28 schema:affiliation https://www.grid.ac/institutes/grid.249964.4
74 schema:familyName Sohn
75 schema:givenName Ilkwon
76 rdf:type schema:Person
77 N3fb61de2cbc64fc3aba6499bac406c17 rdf:first Nea9628d0acf147dabb4c543cd476c552
78 rdf:rest Ne650ccc9129c42238f8741e8b3321a16
79 N406176acc01f47b68bf51a8d32a597f7 schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N431ef8fd60bd454ea2fb7021c0b03a9c schema:volumeNumber 9
82 rdf:type schema:PublicationVolume
83 N4cc8d0ffc49745b89f7ad4304a5d4234 schema:name doi
84 schema:value 10.1038/s41598-019-39439-0
85 rdf:type schema:PropertyValue
86 N4cfc03db6c6c4752ae54ff6300d031f5 schema:name pubmed_id
87 schema:value 30824753
88 rdf:type schema:PropertyValue
89 N5d5888ebb7664815921e54898321751d rdf:first N31cf252a5cb84e94a477abbc8bc30b28
90 rdf:rest N3fb61de2cbc64fc3aba6499bac406c17
91 N692e96d5fc08409296c399c7918d5926 schema:name dimensions_id
92 schema:value pub.1112471428
93 rdf:type schema:PropertyValue
94 N76bafe814a484471b17a840f7db8c3bf schema:affiliation https://www.grid.ac/institutes/grid.222754.4
95 schema:familyName Heo
96 schema:givenName Jun
97 rdf:type schema:Person
98 N856b59d539c443c3bd541a82b2cfe8a6 schema:name readcube_id
99 schema:value 8a08fcefdd1d0228d350ce7aff68855ceb594443da559bb00d3fcd32d1554336
100 rdf:type schema:PropertyValue
101 Ne650ccc9129c42238f8741e8b3321a16 rdf:first N76bafe814a484471b17a840f7db8c3bf
102 rdf:rest rdf:nil
103 Nea9628d0acf147dabb4c543cd476c552 schema:affiliation https://www.grid.ac/institutes/grid.249961.1
104 schema:familyName Bang
105 schema:givenName Jeongho
106 rdf:type schema:Person
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
111 schema:name Computation Theory and Mathematics
112 rdf:type schema:DefinedTerm
113 sg:grant.7495755 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39439-0
114 rdf:type schema:MonetaryGrant
115 sg:journal.1045337 schema:issn 2045-2322
116 schema:name Scientific Reports
117 rdf:type schema:Periodical
118 sg:pub.10.1038/nature03350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032975547
119 https://doi.org/10.1038/nature03350
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature18648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015199953
122 https://doi.org/10.1038/nature18648
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/npjqi.2015.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021620095
125 https://doi.org/10.1038/npjqi.2015.4
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/s41534-016-0003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083821376
128 https://doi.org/10.1038/s41534-016-0003-1
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/s41534-018-0085-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106837336
131 https://doi.org/10.1038/s41534-018-0085-z
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/s41598-018-23764-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101853037
134 https://doi.org/10.1038/s41598-018-23764-x
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/srep07501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017772418
137 https://doi.org/10.1038/srep07501
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep19578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043744108
140 https://doi.org/10.1038/srep19578
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.parco.2014.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017181410
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/2058-9565/aa7c4a schema:sameAs https://app.dimensions.ai/details/publication/pub.1091034580
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/2058-9565/aaa5cc schema:sameAs https://app.dimensions.ai/details/publication/pub.1100250348
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1098/rspa.1998.0166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025826813
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.52.r2493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491074
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreva.71.022316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042360261
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreva.86.052329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038330480
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreva.86.052336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009118054
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.89.022317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033769866
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.94.032311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516581
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreva.95.022313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083780819
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreva.96.032337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092017093
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.113.080501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001475100
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.113.220501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052324251
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.117.010501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765820
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.117.060504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766030
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.120.050504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100757535
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.74.4083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027772386
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.77.793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814597
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevx.2.031007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009428881
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/revmodphys.87.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839783
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/2.976922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106498
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/mc.2006.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061387738
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tcad.2005.855930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061537326
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1116955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028447014
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/2494568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051763195
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2200/s00066ed1v01y200610cac001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069287952
195 rdf:type schema:CreativeWork
196 https://doi.org/10.22331/q-2017-10-03-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092082107
197 rdf:type schema:CreativeWork
198 https://doi.org/10.22331/q-2018-02-08-53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100935570
199 rdf:type schema:CreativeWork
200 https://doi.org/10.22331/q-2018-06-07-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104455364
201 rdf:type schema:CreativeWork
202 https://doi.org/10.5860/choice.49-0323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073448194
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.222754.4 schema:alternateName Korea University
205 schema:name School of Electrical Engineering, Korea University, Seoul, Korea
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.249961.1 schema:alternateName Korea Institute for Advanced Study
208 schema:name School of Computational Sciences, Korea Institute for Advanced Study, 02455, Seoul, Korea
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.249964.4 schema:alternateName Korea Institute of Science & Technology Information
211 schema:name Advanced KREONET Center, Korea Institute of Science and Technology Information, Daejeon, Korea
212 School of Electrical Engineering, Korea University, Seoul, Korea
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...