The Limits of Earthquake Early Warning Accuracy and Best Alerting Strategy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sarah E. Minson, Annemarie S. Baltay, Elizabeth S. Cochran, Thomas C. Hanks, Morgan T. Page, Sara K. McBride, Kevin R. Milner, Men-Andrin Meier

ABSTRACT

We explore how accurate earthquake early warning (EEW) can be, given our limited ability to forecast expected shaking even if the earthquake source is known. Because of the strong variability of ground motion metrics, such as peak ground acceleration (PGA) and peak ground velocity (PGV), we find that correct alerts (i.e., alerts that accurately estimate the ground motion will be above a predetermined damage threshold) are not expected to be the most common EEW outcome even when the earthquake magnitude and location are accurately determined. Infrequently, ground motion variability results in a user receiving a false alert because the ground motion turned out to be significantly smaller than the system expected. More commonly, users will experience missed alerts when the system does not issue an alert but the user experiences potentially damaging shaking. Despite these inherit limitations, EEW can significantly mitigate earthquake losses for false-alert-tolerant users who choose to receive alerts for expected ground motions much smaller than the level that could cause damage. Although this results in many false alerts (unnecessary alerts for earthquakes that do not produce damaging ground shaking), it minimizes the number of missed alerts and produces overall optimal performance. More... »

PAGES

2478

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39384-y

DOI

http://dx.doi.org/10.1038/s41598-019-39384-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112286097

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30792471


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, Menlo Park, 94025, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minson", 
        "givenName": "Sarah E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, Menlo Park, 94025, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baltay", 
        "givenName": "Annemarie S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, Pasadena, 91106, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cochran", 
        "givenName": "Elizabeth S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, Menlo Park, 94025, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanks", 
        "givenName": "Thomas C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, Pasadena, 91106, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Page", 
        "givenName": "Morgan T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, Menlo Park, 94025, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McBride", 
        "givenName": "Sara K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "University of Southern California, Los Angeles, 90089, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milner", 
        "givenName": "Kevin R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "California Institute of Technology, Pasadena, 91125, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meier", 
        "givenName": "Men-Andrin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2008eo080001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006366443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-016-9864-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008942735", 
          "https://doi.org/10.1007/s10518-016-9864-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl069372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009972546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72241-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011834669", 
          "https://doi.org/10.1007/978-3-540-72241-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72241-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011834669", 
          "https://doi.org/10.1007/978-3-540-72241-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120080255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015255024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120090312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016451697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/1.4000127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020436292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl036644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022073425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120130163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029685336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/070913eqs197m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030435055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/070913eqs198m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042916189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/072813eqs219m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047909607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/070113eqs186m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048449373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120140359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052761954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120140280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068471979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0220150113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068472249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120160173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084363258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120160164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085778648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0220170150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092928344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aar4640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093089279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0220170138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099882863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0220170140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099882865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120170085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100588849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aaq0504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101673418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120170376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105805228"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We explore how accurate earthquake early warning (EEW) can be, given our limited ability to forecast expected shaking even if the earthquake source is known. Because of the strong variability of ground motion metrics, such as peak ground acceleration (PGA) and peak ground velocity (PGV), we find that correct alerts (i.e., alerts that accurately estimate the ground motion will be above a predetermined damage threshold) are not expected to be the most common EEW outcome even when the earthquake magnitude and location are accurately determined. Infrequently, ground motion variability results in a user receiving a false alert because the ground motion turned out to be significantly smaller than the system expected. More commonly, users will experience missed alerts when the system does not issue an alert but the user experiences potentially damaging shaking. Despite these inherit limitations, EEW can significantly mitigate earthquake losses for false-alert-tolerant users who choose to receive alerts for expected ground motions much smaller than the level that could cause damage. Although this results in many false alerts (unnecessary alerts for earthquakes that do not produce damaging ground shaking), it minimizes the number of missed alerts and produces overall optimal performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39384-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "The Limits of Earthquake Early Warning Accuracy and Best Alerting Strategy", 
    "pagination": "2478", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "668bce87fbffa4d85dc8efe6e57abda809d4bfefe3e74807efc19a259a96b95d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30792471"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39384-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112286097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39384-y", 
      "https://app.dimensions.ai/details/publication/pub.1112286097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39384-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39384-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39384-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39384-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39384-y'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39384-y schema:about anzsrc-for:04
2 anzsrc-for:0404
3 schema:author N99692bb73ef4402f984959683ec9cda3
4 schema:citation sg:pub.10.1007/978-3-540-72241-0_3
5 sg:pub.10.1007/s10518-016-9864-0
6 https://doi.org/10.1002/2016gl069372
7 https://doi.org/10.1029/2008eo080001
8 https://doi.org/10.1029/2008gl036644
9 https://doi.org/10.1126/sciadv.aaq0504
10 https://doi.org/10.1126/science.aar4640
11 https://doi.org/10.1193/070113eqs186m
12 https://doi.org/10.1193/070913eqs197m
13 https://doi.org/10.1193/070913eqs198m
14 https://doi.org/10.1193/072813eqs219m
15 https://doi.org/10.1193/1.4000127
16 https://doi.org/10.1785/0120080255
17 https://doi.org/10.1785/0120090312
18 https://doi.org/10.1785/0120130163
19 https://doi.org/10.1785/0120140280
20 https://doi.org/10.1785/0120140359
21 https://doi.org/10.1785/0120160164
22 https://doi.org/10.1785/0120160173
23 https://doi.org/10.1785/0120170085
24 https://doi.org/10.1785/0120170376
25 https://doi.org/10.1785/0220150113
26 https://doi.org/10.1785/0220170138
27 https://doi.org/10.1785/0220170140
28 https://doi.org/10.1785/0220170150
29 schema:datePublished 2019-12
30 schema:datePublishedReg 2019-12-01
31 schema:description We explore how accurate earthquake early warning (EEW) can be, given our limited ability to forecast expected shaking even if the earthquake source is known. Because of the strong variability of ground motion metrics, such as peak ground acceleration (PGA) and peak ground velocity (PGV), we find that correct alerts (i.e., alerts that accurately estimate the ground motion will be above a predetermined damage threshold) are not expected to be the most common EEW outcome even when the earthquake magnitude and location are accurately determined. Infrequently, ground motion variability results in a user receiving a false alert because the ground motion turned out to be significantly smaller than the system expected. More commonly, users will experience missed alerts when the system does not issue an alert but the user experiences potentially damaging shaking. Despite these inherit limitations, EEW can significantly mitigate earthquake losses for false-alert-tolerant users who choose to receive alerts for expected ground motions much smaller than the level that could cause damage. Although this results in many false alerts (unnecessary alerts for earthquakes that do not produce damaging ground shaking), it minimizes the number of missed alerts and produces overall optimal performance.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N8fd1f112a2c74cb49e625da47047165e
36 Nebe5ec2fbdcb44f09464549b634841e3
37 sg:journal.1045337
38 schema:name The Limits of Earthquake Early Warning Accuracy and Best Alerting Strategy
39 schema:pagination 2478
40 schema:productId N0271b92f39be49e5879683b55f436cef
41 N3aa7f61150d141009699b60cd4a04f18
42 N6c1f435fe60f4e5bbf1478cd39dc5d33
43 Na991ddb6dc114c93b89d4a4650e17d46
44 Ndf1872db5d38468e960735c2f27f0940
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112286097
46 https://doi.org/10.1038/s41598-019-39384-y
47 schema:sdDatePublished 2019-04-11T10:27
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Na69997164f7b415487163b0a46404d08
50 schema:url https://www.nature.com/articles/s41598-019-39384-y
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N022dd7073cb64539bfdb7f3fc99d7b5e rdf:first N8b39ee79f625492d84061a2003536734
55 rdf:rest Nd71437e19e5545baaa96689e60438a9a
56 N0271b92f39be49e5879683b55f436cef schema:name nlm_unique_id
57 schema:value 101563288
58 rdf:type schema:PropertyValue
59 N0c223393311640dda54747f21a91ead2 rdf:first N2e1501fa581f42dfb8babcaa46b02c1a
60 rdf:rest N144a41d7daf64d7c8676df293f54b5ee
61 N0c667ab085974e06aed22af3f179560d schema:affiliation https://www.grid.ac/institutes/grid.2865.9
62 schema:familyName Minson
63 schema:givenName Sarah E.
64 rdf:type schema:Person
65 N144a41d7daf64d7c8676df293f54b5ee rdf:first N4d9cc2431e434983a68e886c5f1f7d95
66 rdf:rest N022dd7073cb64539bfdb7f3fc99d7b5e
67 N2a7c5c4c6b5e4f82b679adfe3d2b86d2 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
68 schema:familyName Milner
69 schema:givenName Kevin R.
70 rdf:type schema:Person
71 N2e1501fa581f42dfb8babcaa46b02c1a schema:affiliation https://www.grid.ac/institutes/grid.2865.9
72 schema:familyName Cochran
73 schema:givenName Elizabeth S.
74 rdf:type schema:Person
75 N37c280da830941faa7afbbb5886fd100 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
76 schema:familyName McBride
77 schema:givenName Sara K.
78 rdf:type schema:Person
79 N39e62e4f6543424ca5b2eacec0a8bb34 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
80 schema:familyName Baltay
81 schema:givenName Annemarie S.
82 rdf:type schema:Person
83 N3aa7f61150d141009699b60cd4a04f18 schema:name readcube_id
84 schema:value 668bce87fbffa4d85dc8efe6e57abda809d4bfefe3e74807efc19a259a96b95d
85 rdf:type schema:PropertyValue
86 N4d9cc2431e434983a68e886c5f1f7d95 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
87 schema:familyName Hanks
88 schema:givenName Thomas C.
89 rdf:type schema:Person
90 N4f66f9fd2d104f68a609f24cca565e37 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
91 schema:familyName Meier
92 schema:givenName Men-Andrin
93 rdf:type schema:Person
94 N6c1f435fe60f4e5bbf1478cd39dc5d33 schema:name dimensions_id
95 schema:value pub.1112286097
96 rdf:type schema:PropertyValue
97 N6e32cfa0afc54bc79c68c2960d5f987e rdf:first N4f66f9fd2d104f68a609f24cca565e37
98 rdf:rest rdf:nil
99 N8b39ee79f625492d84061a2003536734 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
100 schema:familyName Page
101 schema:givenName Morgan T.
102 rdf:type schema:Person
103 N8fd1f112a2c74cb49e625da47047165e schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 N99692bb73ef4402f984959683ec9cda3 rdf:first N0c667ab085974e06aed22af3f179560d
106 rdf:rest Nb50c686e16b641dc984704779c7338f5
107 Na69997164f7b415487163b0a46404d08 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Na991ddb6dc114c93b89d4a4650e17d46 schema:name doi
110 schema:value 10.1038/s41598-019-39384-y
111 rdf:type schema:PropertyValue
112 Nb50c686e16b641dc984704779c7338f5 rdf:first N39e62e4f6543424ca5b2eacec0a8bb34
113 rdf:rest N0c223393311640dda54747f21a91ead2
114 Nd71437e19e5545baaa96689e60438a9a rdf:first N37c280da830941faa7afbbb5886fd100
115 rdf:rest Ne293a55b81414fa9a0a774c0ad95727a
116 Ndf1872db5d38468e960735c2f27f0940 schema:name pubmed_id
117 schema:value 30792471
118 rdf:type schema:PropertyValue
119 Ne293a55b81414fa9a0a774c0ad95727a rdf:first N2a7c5c4c6b5e4f82b679adfe3d2b86d2
120 rdf:rest N6e32cfa0afc54bc79c68c2960d5f987e
121 Nebe5ec2fbdcb44f09464549b634841e3 schema:volumeNumber 9
122 rdf:type schema:PublicationVolume
123 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
124 schema:name Earth Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
127 schema:name Geophysics
128 rdf:type schema:DefinedTerm
129 sg:journal.1045337 schema:issn 2045-2322
130 schema:name Scientific Reports
131 rdf:type schema:Periodical
132 sg:pub.10.1007/978-3-540-72241-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011834669
133 https://doi.org/10.1007/978-3-540-72241-0_3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10518-016-9864-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008942735
136 https://doi.org/10.1007/s10518-016-9864-0
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/2016gl069372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009972546
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1029/2008eo080001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006366443
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1029/2008gl036644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022073425
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/sciadv.aaq0504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101673418
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1126/science.aar4640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093089279
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1193/070113eqs186m schema:sameAs https://app.dimensions.ai/details/publication/pub.1048449373
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1193/070913eqs197m schema:sameAs https://app.dimensions.ai/details/publication/pub.1030435055
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1193/070913eqs198m schema:sameAs https://app.dimensions.ai/details/publication/pub.1042916189
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1193/072813eqs219m schema:sameAs https://app.dimensions.ai/details/publication/pub.1047909607
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1193/1.4000127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020436292
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1785/0120080255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015255024
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1785/0120090312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016451697
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1785/0120130163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029685336
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1785/0120140280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068471979
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1785/0120140359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052761954
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1785/0120160164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085778648
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1785/0120160173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084363258
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1785/0120170085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100588849
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1785/0120170376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105805228
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1785/0220150113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068472249
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1785/0220170138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099882863
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1785/0220170140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099882865
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1785/0220170150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092928344
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
185 schema:name California Institute of Technology, Pasadena, 91125, California, USA
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.2865.9 schema:alternateName United States Geological Survey
188 schema:name U.S. Geological Survey, Menlo Park, 94025, California, USA
189 U.S. Geological Survey, Pasadena, 91106, California, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
192 schema:name University of Southern California, Los Angeles, 90089, California, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...